Estimation of ground-level NO2 and its spatiotemporal variations in China using GEMS measurements and a nested machine learning model

估计 中国 计算机科学 环境科学 地理 工程类 系统工程 考古
作者
Naveed Ahmad,Changqing Lin,Alexis K.H. Lau,Jhoon Kim,Tianshu Zhang,Fangqun Yu,Chengcai Li,Ying Li,Jimmy Chi Hung Fung,Xiang Qian Lao
出处
期刊:Atmospheric Chemistry and Physics [Copernicus Publications]
卷期号:24 (16): 9645-9665
标识
DOI:10.5194/acp-24-9645-2024
摘要

Abstract. The major link between satellite-derived vertical column densities (VCDs) of nitrogen dioxide (NO2) and ground-level concentrations is theoretically the NO2 mixing height (NMH). Various meteorological parameters have been used as a proxy for NMH in existing studies. This study developed a nested XGBoost machine learning model to convert VCDs of NO2 into ground-level NO2 concentrations across China using Geostationary Environmental Monitoring Spectrometer (GEMS) measurements. This nested model was designed to directly incorporate NMH into the methodological framework to estimate satellite-derived ground-level NO2 concentrations. The inner machine learning model predicted the NMH from meteorological parameters, which were then input into the main XGBoost machine learning model to predict the ground-level NO2 concentrations from its VCDs. The inclusion of NMH significantly enhanced the accuracy of ground-level NO2 concentration estimates; i.e., the R2 values were improved from 0.73 to 0.93 in 10-fold cross-validation and from 0.88 to 0.99 in the fully trained model. Furthermore, NMH was identified as the second most important predictor variable, following the VCDs of NO2. Subsequently, the satellite-derived ground-level NO2 data were analyzed across subregions with varying geographic locations and urbanization levels. Highly populated areas typically experienced peak NO2 concentrations during the early morning rush hour, whereas areas categorized as lightly populated observed a slight increase in NO2 levels 1 or 2 h later, likely due to regional pollutant dispersion from urban sources. This study underscores the importance of incorporating NMH in estimating ground-level NO2 from satellite column measurements and highlights the significant advantages of geostationary satellites in providing detailed air pollution information at an hourly resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tsing发布了新的文献求助30
2秒前
3秒前
4秒前
5秒前
小金骑士发布了新的文献求助10
8秒前
9秒前
酷炫依白发布了新的文献求助10
9秒前
LZM完成签到,获得积分10
9秒前
12秒前
Joaquin完成签到 ,获得积分10
13秒前
liang发布了新的文献求助10
14秒前
bing完成签到,获得积分10
14秒前
酷炫依白完成签到,获得积分10
14秒前
聪明的破茧完成签到,获得积分10
15秒前
18秒前
KinKrit完成签到,获得积分10
18秒前
科研通AI2S应助小元采纳,获得10
20秒前
奔腾小马发布了新的文献求助10
24秒前
Tonald Yang发布了新的文献求助10
28秒前
29秒前
cing完成签到,获得积分10
29秒前
30秒前
30秒前
顾矜应助科研通管家采纳,获得10
32秒前
32秒前
科研助手6应助科研通管家采纳,获得10
32秒前
落后导师应助科研通管家采纳,获得10
32秒前
CodeCraft应助科研通管家采纳,获得10
33秒前
赘婿应助科研通管家采纳,获得10
33秒前
搜集达人应助科研通管家采纳,获得10
33秒前
Done应助科研通管家采纳,获得10
33秒前
可爱的函函应助科研通管家采纳,获得200
33秒前
酷波er应助科研通管家采纳,获得10
33秒前
科研通AI5应助科研通管家采纳,获得10
33秒前
顾矜应助科研通管家采纳,获得10
33秒前
科研助手6应助科研通管家采纳,获得10
33秒前
科研助手6应助科研通管家采纳,获得10
33秒前
李健应助科研通管家采纳,获得10
33秒前
落后导师应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323664
关于积分的说明 10215332
捐赠科研通 3038846
什么是DOI,文献DOI怎么找? 1667661
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339