On the design space between molecular mechanics and machine learning force fields

分子力学 空格(标点符号) 力场(虚构) 经典力学 计算机科学 物理 人工智能 分子动力学 量子力学 操作系统
作者
Yuanqing Wang,Kenichiro Takaba,Michael S. Chen,Marcus Wieder,Yuzhi Xu,Tong Zhu,John Z. H. Zhang,Arnav M. Nagle,Yu Kuang,Xinyan Wang,Daniel J. Cole,Joshua A. Rackers,Kyunghyun Cho,Joe G. Greener,Peter Eastman,Stefano Martiniani,Mark E. Tuckerman
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2409.01931
摘要

A force field as accurate as quantum mechanics (QM) and as fast as molecular mechanics (MM), with which one can simulate a biomolecular system efficiently enough and meaningfully enough to get quantitative insights, is among the most ardent dreams of biophysicists -- a dream, nevertheless, not to be fulfilled any time soon. Machine learning force fields (MLFFs) represent a meaningful endeavor towards this direction, where differentiable neural functions are parametrized to fit ab initio energies, and furthermore forces through automatic differentiation. We argue that, as of now, the utility of the MLFF models is no longer bottlenecked by accuracy but primarily by their speed (as well as stability and generalizability), as many recent variants, on limited chemical spaces, have long surpassed the chemical accuracy of $1$ kcal/mol -- the empirical threshold beyond which realistic chemical predictions are possible -- though still magnitudes slower than MM. Hoping to kindle explorations and designs of faster, albeit perhaps slightly less accurate MLFFs, in this review, we focus our attention on the design space (the speed-accuracy tradeoff) between MM and ML force fields. After a brief review of the building blocks of force fields of either kind, we discuss the desired properties and challenges now faced by the force field development community, survey the efforts to make MM force fields more accurate and ML force fields faster, envision what the next generation of MLFF might look like.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jw完成签到,获得积分10
刚刚
诚心冬亦发布了新的文献求助10
刚刚
刚刚
不吃鱼的猫完成签到 ,获得积分10
1秒前
七里香发布了新的文献求助10
1秒前
漂亮蘑菇发布了新的文献求助10
1秒前
1秒前
啦啦啦完成签到,获得积分20
2秒前
迷你的无声完成签到,获得积分10
2秒前
2秒前
318yyl发布了新的文献求助20
2秒前
2秒前
浮游应助冷静的傲安采纳,获得10
3秒前
青山完成签到 ,获得积分10
3秒前
爱学习完成签到 ,获得积分20
3秒前
drZZY发布了新的文献求助10
3秒前
4秒前
英俊的铭应助陆66采纳,获得10
4秒前
cheryl发布了新的文献求助10
4秒前
所所应助眼睛大的书本采纳,获得10
4秒前
梁晓元发布了新的文献求助10
5秒前
5秒前
周花花完成签到,获得积分10
5秒前
赵ben山完成签到,获得积分10
5秒前
huangzitong发布了新的文献求助10
5秒前
6秒前
zhuying完成签到,获得积分10
6秒前
JamesPei应助宽叶榕采纳,获得10
6秒前
komisan发布了新的文献求助10
7秒前
7秒前
wxy发布了新的文献求助10
7秒前
7秒前
iuhgnor发布了新的文献求助10
7秒前
所所应助幸运符采纳,获得10
7秒前
科目三应助美好的问枫采纳,获得10
7秒前
咸鱼小白完成签到,获得积分10
8秒前
完美世界应助隋盈春采纳,获得10
8秒前
8秒前
考拉浚发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5025308
求助须知:如何正确求助?哪些是违规求助? 4262235
关于积分的说明 13284961
捐赠科研通 4069603
什么是DOI,文献DOI怎么找? 2225832
邀请新用户注册赠送积分活动 1234456
关于科研通互助平台的介绍 1158447