亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MXene-derived titanate heterojunctions with lightweight and heat-resistant properties for electromagnetic wave absorption

异质结 材料科学 钛酸酯 吸收(声学) 电磁辐射 复合材料 光电子学 陶瓷 光学 物理
作者
Chao Zhao,Xiaojun Zeng,Jun Huang,Yanfeng Gao,Bingbing Fan
出处
期刊:Carbon [Elsevier BV]
卷期号:228: 119422-119422 被引量:19
标识
DOI:10.1016/j.carbon.2024.119422
摘要

The development of high-efficiency titanate-based electromagnetic wave (EMW) absorbers presents a significant challenge, primarily due to the limited number of loss mechanisms available in such materials. Herein, an innovative approach has been employed, utilizing g-C3N4 as a connecting bridge linking KTi8O16.5 nanorods with Fe2O3 nanoparticles, thereby crafting a KTO/Fe2O3–CN absorber with a dual heterojunction architecture. This sophisticated structure is realized through a detailed freeze-drying process followed by heat treatment. In this structure, g-C3N4 and KTi8O16.5 originate from melamine and MXene precursors, respectively, while Fe2O3 component is derived from the thermal decomposition of FeSO4. The integrated KTO/Fe2O3–CN system fosters enhanced interfacial and dipole polarization, as well as conduction and magnetic loss, all collaboratively aiding in the attenuation of EM waves. In addition, the specially designed EMW absorber is notable for its lightweight nature, along with impressive heat dissipation and resistant performance. It demonstrates exceptional thermal stability, capable of withstanding temperatures as high as 500 °C and sustaining repeated thermal cycles at 400 °C. This strategy not only elevates the efficacy of titanate-based EMW absorbers but also paves the way for the conceptualization of high-performance, multifunctional EMW absorption materials. Such advancements hold the promise of transforming a wide range of applications that necessitate effective EM wave attenuation, marking a significant leap forward in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
14秒前
HD完成签到,获得积分10
19秒前
GPTea应助科研通管家采纳,获得20
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
GPTea应助科研通管家采纳,获得20
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
李爱国应助不是小苦瓜采纳,获得10
20秒前
不是小苦瓜完成签到,获得积分20
27秒前
38秒前
yangyueqiong发布了新的文献求助10
44秒前
yangyueqiong完成签到,获得积分10
1分钟前
zm完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Marciu33应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
唐泽雪穗发布了新的文献求助10
3分钟前
小蘑菇应助泽灵采纳,获得10
3分钟前
3分钟前
泽灵发布了新的文献求助10
3分钟前
3分钟前
薛清棵发布了新的文献求助10
4分钟前
GPTea应助科研通管家采纳,获得20
4分钟前
Criminology34应助科研通管家采纳,获得30
4分钟前
Marciu33应助科研通管家采纳,获得10
4分钟前
LONG完成签到 ,获得积分10
4分钟前
薛清棵发布了新的文献求助10
5分钟前
今后应助hahaha123213123采纳,获得30
5分钟前
wzgkeyantong完成签到,获得积分10
5分钟前
6分钟前
6分钟前
GPTea应助科研通管家采纳,获得20
6分钟前
胡菲诺发布了新的文献求助10
6分钟前
6分钟前
11mao11完成签到 ,获得积分10
6分钟前
醉熏的灵安完成签到 ,获得积分10
6分钟前
白柏233完成签到,获得积分10
6分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5199456
求助须知:如何正确求助?哪些是违规求助? 4380045
关于积分的说明 13638761
捐赠科研通 4236450
什么是DOI,文献DOI怎么找? 2324073
邀请新用户注册赠送积分活动 1322081
关于科研通互助平台的介绍 1273370