Aberrant individual large-scale functional network connectivity and topology in chronic insomnia disorder with and without depression

萧条(经济学) 失眠症 功能连接 重性抑郁障碍 心理学 拓扑(电路) 精神科 临床心理学 神经科学 数学 认知 组合数学 经济 宏观经济学
作者
Meiling Chen,Heng Shao,Libo Wang,Jianing Ma,Jin Chen,Junying Li,Jingmei Zhong,Baosheng Zhu,Bin Bi,Kexuan Chen,Jiaojian Wang,Liang Gong
出处
期刊:Progress in Neuro-psychopharmacology & Biological Psychiatry [Elsevier BV]
卷期号:136: 111158-111158 被引量:2
标识
DOI:10.1016/j.pnpbp.2024.111158
摘要

Insomnia is increasingly prevalent with significant associations with depression. Delineating specific neural circuits for chronic insomnia disorder (CID) with and without depressive symptoms is fundamental to develop precision diagnosis and treatment. In this study, we examine static, dynamic and network topology changes of individual large-scale functional network for CID with (CID-D) and without depression to reveal their specific neural underpinnings. Seventeen individual-specific functional brain networks are obtained using a regularized nonnegative matrix factorization technique. Disorders-shared and -specific differences in static and dynamic large-scale functional network connectivities within or between the cognitive control network, dorsal attention network, visual network, limbic network, and default mode network are found for CID and CID-D. Additionally, CID and CID-D groups showed compromised network topological architecture including reduced small-world properties, clustering coefficients and modularity indicating decreased network efficiency and impaired functional segregation. Moreover, the altered neuroimaging indices show significant associations with clinical manifestations and could serve as effective neuromarkers to distinguish among healthy controls, CID and CID-D. Taken together, these findings provide novel insights into the neural basis of CID and CID-D, which may facilitate developing new diagnostic and therapeutic approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
卡皮巴拉yuan关注了科研通微信公众号
刚刚
张先伟完成签到,获得积分10
刚刚
1秒前
Ava应助一棵树采纳,获得10
1秒前
童童童发布了新的文献求助10
1秒前
2秒前
Stormi发布了新的文献求助10
2秒前
zoe完成签到,获得积分10
2秒前
sfx发布了新的文献求助10
3秒前
Anita发布了新的文献求助10
4秒前
5秒前
lwz完成签到,获得积分10
6秒前
6秒前
linguobin完成签到,获得积分10
7秒前
7秒前
8秒前
WEN发布了新的文献求助10
9秒前
Beth完成签到,获得积分10
9秒前
科研通AI5应助你好采纳,获得10
10秒前
小柒发布了新的文献求助10
10秒前
鹿鹿鸭发布了新的文献求助10
11秒前
彭彭发布了新的文献求助10
12秒前
13秒前
w婷完成签到 ,获得积分10
13秒前
14秒前
WEN完成签到,获得积分10
14秒前
14秒前
15秒前
香蕉觅云应助活力初晴采纳,获得10
15秒前
16秒前
十月完成签到 ,获得积分10
16秒前
16秒前
alverine发布了新的文献求助10
18秒前
18秒前
20秒前
21秒前
冷静安南发布了新的文献求助50
21秒前
22秒前
quan发布了新的文献求助10
24秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Resonance: A Sociology of Our Relationship to the World 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828224
求助须知:如何正确求助?哪些是违规求助? 3370504
关于积分的说明 10463657
捐赠科研通 3090446
什么是DOI,文献DOI怎么找? 1700395
邀请新用户注册赠送积分活动 817833
科研通“疑难数据库(出版商)”最低求助积分说明 770486