Online Regulation of Task Difficulty based on Neuro- and Motor-feedback to improve engagement in Visual-motor Task.

任务(项目管理) 计算机科学 视觉反馈 人机交互 物理医学与康复 人工智能 工程类 医学 系统工程
作者
Yifan Li,Rong Song
出处
期刊:PubMed 卷期号:PP
标识
DOI:10.1109/tbme.2025.3615733
摘要

Enhancing active engagement in post-stroke rehabilitation is critical for promoting neuroplasticity. Although adaptive feedback can optimize arousal to improve engagement, most approaches rely solely on motor or neural indicators, overlooking the integration of task-specific physical performance with neural adaptation. The purpose of this study is to validate the effectiveness of enhancing prefrontal cortex (PFC) neural activity through a closed-loop adaptive feedback system. In this study, a neuro- and motor-feedback (NMF) system is proposed. It utilizes functional near infrared spectroscopy (fNIRS) and tracking error to continuously monitor real-time neural activity and motor performance during a visual-motor task, and realizes online adaptive regulation of task difficulty through fuzzy logic controller. 10 healthy participants were recruited for a 5-day training program, during which each participant completed 15 task trials at both fixed and adaptive difficulty levels, serving as the control group and the NMF group. Compared to the control group, the NMF group showed increased tracking errors as well as heightened neural activity in the PFC and the sensorimotor cortex (SMC), in both single-task trial and after 5 days of training. Moreover, the NMF group exhibited significantly increased strength of brain functional connections between the PFC and sensorimotor areas after training compared to the control group. Our findings suggest that the proposed NMF system can enable online neural activity regulation in visual-motor tasks and achieve enhanced integration between cognitive and sensorimotor areas, with the potential to improve the rehabilitation training outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
欢喜发布了新的文献求助10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得20
刚刚
lyncee应助科研通管家采纳,获得30
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
1秒前
科研通AI6应助科研通管家采纳,获得30
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
帅气善斓应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
tuanheqi应助科研通管家采纳,获得80
1秒前
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
帅气善斓应助科研通管家采纳,获得10
1秒前
1秒前
Jared应助科研通管家采纳,获得10
1秒前
溜了溜了完成签到 ,获得积分10
1秒前
ROOOOOK完成签到,获得积分10
2秒前
青己完成签到 ,获得积分10
2秒前
和春住完成签到,获得积分10
2秒前
3秒前
4秒前
xdm发布了新的文献求助10
5秒前
大模型应助怡然羊采纳,获得10
6秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603615
求助须知:如何正确求助?哪些是违规求助? 4688619
关于积分的说明 14855047
捐赠科研通 4694226
什么是DOI,文献DOI怎么找? 2540896
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806