作者
Peng Yu,Ziyang Yu,Lawrence Wang,Yongcheng Gao,Qiang Li,Yiquan Li
摘要
Carbon fiber reinforced silicon carbide (C/SiC) composite material exhibits exceptional properties, including high strength, high stiffness, low density, outstanding high-temperature performance, and corrosion resistance. Consequently, they are widely used in aerospace, defense, and automotive engineering. However, their anisotropic, high hardness, and brittle characteristics make them a typical difficult-to-machine material. This paper focuses on achieving high-quality micro hole machining of C/SiC composite material via electrical discharge machining. It systematically investigates electrical discharge machining characteristics and innovatively develops a hollow internal flow helical electrode reaming process. Experimental results reveal four typical chip morphologies: spherical, columnar, blocky, and molten. The study uncovers a multi-mechanism cutting process: the EDM ablation of the composite involves material melting and explosive vaporization, the intact extraction and fracture of carbon fibers, and the brittle fracture and spalling of the SiC matrix. Discharge energy correlates closely with surface roughness: higher energy removes more SiC, resulting in greater roughness, while lower energy concentrates on m fibers, yielding higher vaporization rates. C fiber orientation significantly impacts removal rates: processing time is shortest at θ = 90°, longest at θ = 0°, and increases as θ decreases. Typical defects such as delamination were observed between alternating 0° and 90° fiber bundles or at hole entrances. Cracks were also detected at the SiC matrix–C fiber interface. The proposed hole-enlargement process enhances chip removal efficiency through its helical structure and internal flushing, reduces abnormal discharges, mitigates micro hole taper, and thereby improves forming quality. This study provides practical references for the EDM of C/SiC composite material.