Can we Interpret Analyses of Etiological Heterogeneity when Molecular Markers are Used to Classify Tumors?

作者
Stephen J. Mooney,Andrew Rundle
出处
期刊:Cancer Epidemiology, Biomarkers & Prevention [American Association for Cancer Research]
标识
DOI:10.1158/1055-9965.epi-25-1007
摘要

Abstract Background: Analyses of etiological heterogeneity use molecular markers to sub-type cancers (e.g. breast cancer) and test whether an exposure is more strongly associated with one tumor sub-type as opposed to other sub-types. However, these molecular markers (e.g. a mutated oncogene) may best be conceptualized as mediators of exposure-disease relationships. Methods: Seven model causal scenarios, based on data from the literature on post-menopausal breast cancer, were created with varying relationships between an exposure (E), a mediating or non-mediating molecular marker (M) and a disease status (D), with M used to sub-type the disease. Using numerical examples, we assessed how well analyses of etiological heterogeneity identify the distinct etiological pathways in these seven scenarios. Results: etiological heterogeneity analyses of the data from the four causal mediation models produced similar results despite the mediating role of M differing across scenarios, with heterogeneity effect sizes ranging from 1.47 to 1.60. Analyses of data from the two scenarios in which M did not affect the risk of D, also produced evidence of etiological heterogeneity, with heterogeneity effect sizes of 1.53 and 2.66. The smallest heterogeneity effect size (1.33) was observed in the scenario where M was a sufficient cause of D. Conclusions: This methodological research indicates that analyses of etiological heterogeneity cannot distinguish between the modeled causal scenarios when a mediating or non-mediating molecular marker is used to sub-type tumors. Impact: We discuss these results in the context of the literature on obesity and etiological heterogeneity in breast tumors sub-typed by sex hormone receptor status.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助超开心采纳,获得10
刚刚
壮观芷云发布了新的文献求助10
1秒前
Manphie应助infinity采纳,获得20
1秒前
1秒前
仙宝头完成签到,获得积分10
1秒前
刘玉梅完成签到,获得积分10
2秒前
Owen应助纯白色采纳,获得30
4秒前
曲初雪发布了新的文献求助10
4秒前
充电宝应助junjie采纳,获得10
4秒前
空谷新苗发布了新的文献求助10
5秒前
舒适笑容完成签到,获得积分10
5秒前
6秒前
晓驿完成签到,获得积分10
6秒前
现代破茧完成签到,获得积分10
6秒前
daxian完成签到,获得积分20
7秒前
7秒前
啦啦啦完成签到,获得积分20
7秒前
万能图书馆应助谨慎鞅采纳,获得10
8秒前
colaaa发布了新的文献求助10
8秒前
第二只羽毛完成签到,获得积分20
9秒前
张传强发布了新的文献求助10
10秒前
小葱完成签到,获得积分10
10秒前
ding应助YSH采纳,获得10
11秒前
英姑应助老登采纳,获得10
11秒前
Lico发布了新的文献求助20
11秒前
SciGPT应助bnuhbniuniu采纳,获得10
12秒前
12秒前
汪澳完成签到,获得积分10
12秒前
科研通AI6应助嘻嘻采纳,获得30
13秒前
Titter发布了新的文献求助10
13秒前
小佳同学完成签到 ,获得积分10
13秒前
淡定成风应助典雅的俊驰采纳,获得10
14秒前
14秒前
慈祥的博发布了新的文献求助10
15秒前
15秒前
15秒前
17秒前
17秒前
597发布了新的文献求助30
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321673
求助须知:如何正确求助?哪些是违规求助? 4463315
关于积分的说明 13889726
捐赠科研通 4354469
什么是DOI,文献DOI怎么找? 2391781
邀请新用户注册赠送积分活动 1385392
关于科研通互助平台的介绍 1355144