MXenes公司
碳化物
卤化物
相间
电解质
锂(药物)
过渡金属
化学
材料科学
无机化学
冶金
纳米技术
物理化学
有机化学
催化作用
医学
电极
内分泌学
生物
遗传学
作者
Liang Ma,Yuyan Jiang,Dongrui Xu,Youyou Fang,Ning Li,Duanyun Cao,Lai Chen,Yun Lu,Qing Huang,Yuefeng Su,Feng Wu
标识
DOI:10.1002/ange.202318721
摘要
Abstract Two‐dimensional (2D) layered materials demonstrate prominent advantage in regulating lithium plating/stripping behavior by confining lithium diffusion/plating within interlayer gaps. However, achieving effective interlayer confined lithium diffusion/plating without compromising the stability of bulk‐structural and the solid electrolyte interphase (SEI) remains a considerable challenge. This paper presents an electrochemical scissor and lithium zipper‐driven protocol for realizing interlayer confined lithium plating with pretty‐low strain and volume change. In this protocol, lithium serves as a “zipper” to reunite the adjacent MXene back to MAX‐like phase to markedly enhance the structural stability, and a lithium halide‐rich SEI is formed by electrochemically removing the terminals of halogenated MXenes to maintain the stability and rapid lithium ions diffusion of SEI. When the Ti 3 C 2 I 2 serves as the host for lithium plating, the average coulomb efficiency exceeds 97.0 % after 320 lithium plating/stripping cycles in conventional ester electrolyte. Furthermore, a full cell comprising of LiNi 0.8 Mn 0.1 Co 0.1 O 2 and Ti 3 C 2 I 2 @Li exhibits a capacity retention rate of 73.4 % after 200 cycles even under high cathode mass‐loading (20 mg cm −2 ) and a low negative/positive capacity ratio of 1.4. Our findings advance the understanding of interlayer confined lithium plating in 2D layered materials and provide a new direction in regulating lithium and other metal plating/stripping behaviors.
科研通智能强力驱动
Strongly Powered by AbleSci AI