机械加工
计算
过程(计算)
时域
维数之咒
阻尼比
计算机科学
频域
理论(学习稳定性)
振动
采样(信号处理)
降维
控制理论(社会学)
贝叶斯概率
工程类
算法
人工智能
机器学习
机械工程
物理
控制(管理)
滤波器(信号处理)
计算机视觉
操作系统
量子力学
作者
Aaron Cornelius,Jaydeep Karandikar,Chris Tyler,Tony L. Schmitz
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme
[ASM International]
日期:2024-02-22
卷期号:146 (8)
被引量:1
摘要
Abstract Process damping can provide improved machining productivity by increasing the stability limit at low spindle speeds. While the phenomenon is well known, experimental identification of process damping model parameters can limit pre-process parameter selection that leverages the potential increases in material removal rates. This paper proposes a physics-informed Bayesian method that can identify the cutting force and process damping model coefficients from a limited set of test cuts without requiring direct measurements of cutting force or vibration. The method uses time-domain simulation to incorporate process damping and provide a basis for test selection. New strategies for efficient sampling and dimensionality reduction are applied to lower computation time and minimize the effect of model error. The proposed method is demonstrated, and the identified cutting and damping force coefficients are compared to values obtained using machining tests and least-squares fitting.
科研通智能强力驱动
Strongly Powered by AbleSci AI