Adversarial Contrastive Learning for Evidence-Aware Fake News Detection With Graph Neural Networks

计算机科学 人工智能 互联网 人工神经网络 情报检索 机器学习 万维网
作者
Junfei Wu,Weizhi Xu,Qiang Liu,Shu Wu,Liang Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (11): 5591-5604 被引量:23
标识
DOI:10.1109/tkde.2023.3341640
摘要

The prevalence and perniciousness of fake news have been a critical issue on the Internet, which stimulates the development of automatic fake news detection in turn. In this paper, we focus on the evidence-based fake news detection, where several evidences are utilized to probe the veracity of news (i.e., a claim). Most previous methods first employ sequential models to embed the semantic information and then capture the claim-evidence interaction based on different attention mechanisms. Despite their effectiveness, they still suffer from three weaknesses. Firstly, due to the inherent drawbacks of sequential models, they fail to integrate the relevant information that is scattered far apart in evidences for veracity checking. Secondly, they underestimate much redundant information contained in evidences that may be useless or even harmful. Thirdly, insufficient data utilization limits the separability and reliability of representations captured by the model, which are sensitive to local evidence. To solve these problems, we propose a unified G raph-based s E mantic structure mining framework with Con TRA stive L earning, namely GETRAL in short. Specifically, different from the existing work that treats claims and evidences as sequences, we first model them as graph-structured data and capture the long-distance semantic dependency among dispersed relevant snippets via neighborhood propagation. After obtaining contextual semantic information, our model reduces information redundancy by performing graph structure learning. Then the fine-grained semantic representations are fed into the downstream claim-evidence interaction module for predictions. Finally, the supervised contrastive learning accompanied with adversarial augmented instances is applied to make full use of data and strengthen the representation learning. Comprehensive experiments have demonstrated the superiority of GETRAL over the state-of-the-arts and validated the efficacy of semantic mining with graph structure and contrastive learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶子发布了新的文献求助10
1秒前
STEAD完成签到,获得积分10
1秒前
学术大佬阿呆完成签到 ,获得积分10
1秒前
老实验人完成签到,获得积分10
1秒前
3秒前
科研通AI6应助ruru采纳,获得30
4秒前
利利发布了新的文献求助10
5秒前
Ian完成签到,获得积分10
5秒前
5秒前
LJR完成签到,获得积分10
5秒前
6秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
ontheway发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
万物生完成签到,获得积分10
10秒前
zhsy发布了新的文献求助10
11秒前
lightman完成签到,获得积分10
11秒前
wywy发布了新的文献求助10
13秒前
13秒前
13秒前
波特卡斯D艾斯完成签到 ,获得积分10
13秒前
胡明轩完成签到 ,获得积分10
14秒前
14秒前
onetec发布了新的文献求助10
14秒前
Nano发布了新的文献求助10
15秒前
小路完成签到 ,获得积分10
15秒前
昱鱼七seven完成签到,获得积分10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
无极微光应助科研通管家采纳,获得20
15秒前
蓝天应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
BowieHuang应助科研通管家采纳,获得10
16秒前
iNk应助科研通管家采纳,获得10
16秒前
蓝天应助科研通管家采纳,获得10
16秒前
asdfzxcv应助科研通管家采纳,获得10
16秒前
岑七七应助原yuan采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643881
求助须知:如何正确求助?哪些是违规求助? 4762227
关于积分的说明 15022609
捐赠科研通 4802076
什么是DOI,文献DOI怎么找? 2567320
邀请新用户注册赠送积分活动 1525012
关于科研通互助平台的介绍 1484514