The B3 gene family in Medicago truncatula: Genome-wide identification and the response to salt stress

截形苜蓿 生物 拟南芥 基因家族 基因 非生物胁迫 遗传学 基因组 基因表达 小桶 生物逆境 植物 细胞生物学 转录组 突变体 细菌 共生
作者
Jing Gao,Guangjing Ma,Junjie Chen,Bancy Gichovi,Liwen Cao,Zhihao Liu,Liang Chen
出处
期刊:Plant Physiology and Biochemistry [Elsevier BV]
卷期号:206: 108260-108260 被引量:7
标识
DOI:10.1016/j.plaphy.2023.108260
摘要

The B3 family genes constitute a pivotal group of transcription factors that assume diverse roles in the growth, development, and response to both biotic and abiotic stresses in plants. Medicago truncatula is a diploid plant with a relatively small genome, adopted as a model species for legumes genetics and functional genomic research. In this study, 173 B3 genes were identified in the M. truncatula genome, and classified into seven subgroups by phylogenetic analysis. Collinearity analysis revealed that 18 MtB3 gene pairs arose from segmented replication events. Analysis of expression patterns disclosed that 61 MtB3s exhibited a spectrum of expression profiles across various tissues and in the response to salt stress, indicating their potential involvement in salt stress signaling response. Among these genes, MtB3-53 exhibited tissue-specific differential expression and demonstrated a rapid response to salt stress induction. Overexpression of MtB3-53 gene in Arabidopsis improves salt stress tolerance by increasing plant biomass and chlorophyll content, while reducing leaf cell membrane damage. Moreover, salt treatment resulted in more up-regulation of AtABF1, AtABI3, AtHKT1, AtKIN1, AtNHX1, and AtRD29A in MtB3-53 transgenic Arabidopsis plants compared to the wild type, providing evidences that MtB3-53 enhances plant salt tolerance not only by modulating ion homeostasis but also by stimulating the production of antioxidants, which leads to the alleviation of cellular damage caused by salt stress. In conclusion, this study provides a fundamental basis for future investigations into the B3 gene family and its capacity to regulate plant responses to environmental stressors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青青子衿发布了新的文献求助30
刚刚
整齐的电源完成签到 ,获得积分10
刚刚
平芜尽处完成签到,获得积分10
1秒前
研友_nqv2WZ完成签到,获得积分10
2秒前
3秒前
祝笑柳完成签到,获得积分10
3秒前
清秀凡霜完成签到,获得积分10
4秒前
科研完成签到,获得积分0
4秒前
冷月芳华完成签到,获得积分10
4秒前
FelixChen完成签到,获得积分0
4秒前
阿桂完成签到 ,获得积分10
4秒前
Hello应助kanglan采纳,获得10
4秒前
Song0558完成签到 ,获得积分10
4秒前
faith完成签到,获得积分10
5秒前
起床了吗发布了新的文献求助10
5秒前
5秒前
Tammy完成签到,获得积分10
7秒前
程住气完成签到 ,获得积分10
8秒前
ZS完成签到,获得积分10
8秒前
阔达的太阳完成签到 ,获得积分10
9秒前
咕噜噜咕噜完成签到,获得积分10
9秒前
碧蓝丹烟完成签到 ,获得积分10
9秒前
田様应助Jackcaosky采纳,获得10
9秒前
CodeCraft应助nick采纳,获得10
9秒前
鱼叮叮完成签到,获得积分10
9秒前
ttyhtg完成签到,获得积分10
10秒前
积极的汽车完成签到,获得积分10
10秒前
花已烬完成签到,获得积分10
10秒前
感性的安露完成签到,获得积分0
11秒前
hj123完成签到,获得积分10
12秒前
机械腾完成签到,获得积分10
12秒前
skepticalsnails完成签到,获得积分0
13秒前
悟格完成签到,获得积分10
13秒前
13秒前
刘珍荣完成签到,获得积分10
14秒前
wyz完成签到,获得积分10
14秒前
今后应助科研通管家采纳,获得10
15秒前
ldd应助科研通管家采纳,获得10
15秒前
Billy应助科研通管家采纳,获得30
15秒前
coolkid应助科研通管家采纳,获得10
15秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
Canon of Insolation and the Ice-age Problem 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3910494
求助须知:如何正确求助?哪些是违规求助? 3456046
关于积分的说明 10887066
捐赠科研通 3182120
什么是DOI,文献DOI怎么找? 1759034
邀请新用户注册赠送积分活动 850774
科研通“疑难数据库(出版商)”最低求助积分说明 792264