Sequential Optimal Experimental Design of Perturbation Screens Guided by Multi-modal Priors

计算机科学 先验概率 忠诚 摄动(天文学) 机器学习 人工智能 贝叶斯概率 电信 物理 量子力学
作者
Kexin Huang,Romain Lopez,Jan-Christian Hütter,Takamasa Kudo,Antonio Ríos,Aviv Regev
标识
DOI:10.1101/2023.12.12.571389
摘要

Abstract Understanding a cell’s expression response to genetic perturbations helps to address important challenges in biology and medicine, including the function of gene circuits, discovery of therapeutic targets and cell reprogramming and engineering. In recent years, Perturb-seq, pooled genetic screens with single cell RNA-seq (scRNA-seq) readouts, has emerged as a common method to collect such data. However, irrespective of technological advances, because combinations of gene perturbations can have unpredictable, non-additive effects, the number of experimental configurations far exceeds experimental capacity, and for certain cases, the number of available cells. While recent machine learning models, trained on existing Perturb-seq data sets, can predict perturbation outcomes with some degree of accuracy, they are currently limited by sub-optimal training set selection and the small number of cell contexts of training data, leading to poor predictions for unexplored parts of perturbation space. As biologists deploy Perturb-seq across diverse biological systems, there is an enormous need for algorithms to guide iterative experiments while exploring the large space of possible perturbations and their combinations. Here, we propose a sequential approach for designing Perturb-seq experiments that uses the model to strategically select the most informative perturbations at each step for subsequent experiments. This enables a significantly more efficient exploration of the perturbation space, while predicting the effect of the rest of the unseen perturbations with high-fidelity. Analysis of a previous large-scale Perturb-seq experiment reveals that our setting is severely restricted by the number of examples and rounds, falling into a non-conventional active learning regime called “active learning on a budget”. Motivated by this insight, we develop I ter P ert , a novel active learning method that exploits rich and multi-modal prior knowledge in order to efficiently guide the selection of subsequent perturbations. Using prior knowledge for this task is novel, and crucial for successful active learning on a budget. We validate I ter P ert using insilico benchmarking of active learning, constructed from a large-scale CRISPRi Perturb-seq data set. We find that I ter P ert outperforms other active learning strategies by reaching comparable accuracy at only a third of the number of perturbations profiled as the next best method. Overall, our results demonstrate the potential of sequentially designing perturbation screens through I ter P ert .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈锦鲤完成签到,获得积分10
刚刚
ZY发布了新的文献求助10
1秒前
BINGBING应助健壮的绿凝采纳,获得20
2秒前
小蛙蛙大王完成签到,获得积分10
2秒前
张怡博完成签到 ,获得积分10
4秒前
4秒前
风趣的不悔关注了科研通微信公众号
6秒前
7秒前
8秒前
9秒前
爹爹发布了新的文献求助20
9秒前
11秒前
粽子完成签到,获得积分10
13秒前
morlison完成签到,获得积分10
13秒前
瀼瀼完成签到,获得积分10
14秒前
14秒前
16秒前
16秒前
17秒前
副掌门发布了新的文献求助10
19秒前
科研小白完成签到,获得积分10
20秒前
21秒前
衡阳完成签到,获得积分10
21秒前
ying发布了新的文献求助10
21秒前
三叔完成签到,获得积分0
23秒前
tyro发布了新的文献求助10
23秒前
mj发布了新的文献求助10
24秒前
24秒前
2025顺顺利利完成签到 ,获得积分10
27秒前
不要延毕发布了新的文献求助10
27秒前
共享精神应助lmt采纳,获得30
27秒前
陈锦鲤发布了新的文献求助10
27秒前
可爱的函函应助副掌门采纳,获得10
30秒前
疏木51完成签到,获得积分10
31秒前
英俊的铭应助陈有游采纳,获得10
31秒前
积极的忆曼完成签到,获得积分10
32秒前
34秒前
你长得很下饭所以完成签到 ,获得积分10
34秒前
蔡扬鹏发布了新的文献求助10
36秒前
FashionBoy应助研友_LJGpan采纳,获得10
36秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843938
求助须知:如何正确求助?哪些是违规求助? 3386232
关于积分的说明 10544633
捐赠科研通 3107057
什么是DOI,文献DOI怎么找? 1711392
邀请新用户注册赠送积分活动 824081
科研通“疑难数据库(出版商)”最低求助积分说明 774440