Antimicrobial mechanisms of g‐C3N4@ZnO against oomycetes Phytophthora capsici: From its metabolism, membrane structures and growth

辣椒疫霉 抗菌剂 生物 新陈代谢 疫霉菌 植物 次生代谢 微生物学 生物化学 基因 生物合成
作者
Lin Cai,Xiaopeng Huang,Hui Fu,Guangjin Fan,Xianchao Sun
出处
期刊:Pest Management Science [Wiley]
标识
DOI:10.1002/ps.7946
摘要

Phytophthora capsici, a refractory and model oomycete plant pathogen, especially threatens multiple vegetable crops. A limited number of chemical pesticides play a vital role in controlling oomycete plant diseases. However, this approach often leads to excessive use of chemical agent, exacerbates environmental issues and more and more drug-resistant strains of oomycete. Therefore, it is imperative to devise innovative solutions that can effectively address the infection of oomycete while maintaining high levels of environmental sustainability and low toxicity.In this study, g-C3 N4 @ZnO heterostructure was synthesized and characterized. The g-C3 N4 @ZnO showed higher toxicity on Phytophthora capsici than graphitic carbon nitride (g-C3 N4 ) nanosheets and zinc oxide (ZnO) nanoparticles in vitro and in vivo. Except the hyphal growth of Phytophthora capsici, their germination rate of spores, sporangium formation and number of spores were all suppressed by g-C3 N4 @ZnO heterostructure. Furthermore, we found that this g-C3 N4 @ZnO heterostructure has higher photocatalytic activity under visible light, which potentially enhanced the reactive oxygen species (ROS) mediated stress on Phytophthora capsici. Ultrastructural morphology, global changes of gene expression and weighted gene co-expression network analysis all supported that the anti-oomycete activity of g-C3 N4 @ZnO was manifested in the destruction of membrane system and inhibition of multiple metabolisms of Phytophthora capsici under visible irradiation, which also could be attributed to the ROS and zinc ion (Zn2+ ) mediated stress.This works offers a novel oomycete disease management strategy by using g-C3 N4 @ZnO, which were attributed to the ROS stress, destruction of membrane system and inhibition of multiple metabolisms. © 2023 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
no_one完成签到,获得积分10
5秒前
自信的无剑完成签到,获得积分10
5秒前
6秒前
KK完成签到,获得积分10
6秒前
phantom完成签到,获得积分20
7秒前
共享精神应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
神说应助科研通管家采纳,获得10
8秒前
8秒前
神说应助科研通管家采纳,获得10
8秒前
11秒前
微卫星不稳定完成签到 ,获得积分0
12秒前
疯狂的月亮完成签到 ,获得积分10
12秒前
狮子座发布了新的文献求助10
16秒前
TANG完成签到 ,获得积分10
18秒前
21秒前
thousandsless完成签到 ,获得积分10
22秒前
23秒前
24秒前
天天快乐应助傢誠采纳,获得10
24秒前
失眠水壶发布了新的文献求助10
25秒前
Queen发布了新的文献求助10
29秒前
30秒前
丁晓格完成签到 ,获得积分10
30秒前
gao完成签到,获得积分10
30秒前
大个应助鲤鱼星星采纳,获得10
34秒前
35秒前
38秒前
LIUJC完成签到,获得积分10
44秒前
深情安青应助Queen采纳,获得10
44秒前
45秒前
线条完成签到 ,获得积分10
47秒前
周元发布了新的文献求助10
49秒前
鲤鱼星星完成签到,获得积分10
50秒前
wyuxilong完成签到,获得积分10
54秒前
星辰大海应助wtt采纳,获得10
59秒前
橙子慢慢来完成签到,获得积分10
1分钟前
坦率尔琴完成签到,获得积分10
1分钟前
Ivy发布了新的文献求助10
1分钟前
研友_bZzJqZ完成签到,获得积分10
1分钟前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
Glossary of Geology 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2474695
求助须知:如何正确求助?哪些是违规求助? 2139622
关于积分的说明 5452765
捐赠科研通 1863304
什么是DOI,文献DOI怎么找? 926369
版权声明 562840
科研通“疑难数据库(出版商)”最低求助积分说明 495538