TGC-ARG: Predicting Antibiotic Resistance through Transformer-based Modeling and Contrastive Learning

计算机科学 变压器 抗生素耐药性 抗生素 微生物学 工程类 生物 电气工程 电压
作者
Yihan Dong,Xiaowen Hu,Zhijian Huang,Lei Deng
标识
DOI:10.1109/bibm58861.2023.10385506
摘要

The escalating severity of antibiotic resistance poses substantial challenges across diverse sectors, encompassing everyday life, agriculture, and clinical medical interventions. Conventional methods for investigating antibiotic resistance genes (ARGs), such as culture-based techniques and whole-genome sequencing, often suffer from demands of time, labor, and limited accuracy. Moreover, the fragmented nature of existing datasets hampers a comprehensive analysis of antibiotic resistance gene sequences. In this study, we introduce an innovative computational framework known as TGC-ARG, designed to predict potential ARGs. TGC-ARG harnesses protein sequences as input, retrieves protein structures through SCRATCH-1D, and employs a feature extraction module to deduce feature representations for both protein sequences and structures. Subsequently, we integrate a siamese network to establish a contrastive learning paradigm, thus augmenting the model's representational capabilities. The resultant sequence embeddings and structure embeddings are merged and directed into a Multilayer Perceptron (MLP) for predicting ARG presence. To assess the performance, we curate a pioneering publicly available dataset named ARSS (Antibiotic Resistance Sequence Statistics). Our extensive comparative experimental outcomes underscore the superiority of our approach over the current state-of-the-art (SOTA) methodology. Furthermore, through comprehensive case analyses, we demonstrate the efficacy of our approach in predicting potential ARGs. The dataset and source code are accessible at https://github.com/angel1gel/TGC-ARG.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
大大的DY完成签到 ,获得积分10
4秒前
4秒前
满意的柏柳完成签到 ,获得积分10
5秒前
wlqydyxf发布了新的文献求助10
6秒前
皮凡发布了新的文献求助10
6秒前
小周完成签到 ,获得积分10
6秒前
洁净的天德完成签到,获得积分10
7秒前
户户得振发布了新的文献求助10
9秒前
wzxhhh完成签到,获得积分10
9秒前
ry发布了新的文献求助10
9秒前
顺心香露完成签到,获得积分20
11秒前
搜集达人应助Lazarus_x采纳,获得10
11秒前
汉堡包应助舒适的素采纳,获得10
13秒前
甜甜千亦完成签到,获得积分20
15秒前
Kiwi完成签到 ,获得积分10
17秒前
整齐的忆彤完成签到,获得积分10
18秒前
20秒前
20秒前
传奇3应助CATH采纳,获得10
21秒前
顺心香露发布了新的文献求助10
22秒前
24秒前
Shaangueuropa完成签到,获得积分10
25秒前
25秒前
HaHa007完成签到,获得积分10
26秒前
应应发布了新的文献求助10
28秒前
30秒前
wlqydyxf完成签到,获得积分20
30秒前
wangli发布了新的文献求助10
30秒前
31秒前
31秒前
唐唐发布了新的文献求助10
33秒前
33秒前
个性跳跳糖完成签到,获得积分10
34秒前
如意的泥猴桃完成签到 ,获得积分10
34秒前
35秒前
CATH发布了新的文献求助10
36秒前
ghost202完成签到,获得积分10
36秒前
wbgwudi完成签到,获得积分10
38秒前
诚心代芙完成签到 ,获得积分10
40秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783222
求助须知:如何正确求助?哪些是违规求助? 3328565
关于积分的说明 10236984
捐赠科研通 3043669
什么是DOI,文献DOI怎么找? 1670627
邀请新用户注册赠送积分活动 799792
科研通“疑难数据库(出版商)”最低求助积分说明 759126