摘要
HomeStrokeVol. 53, No. 9Neurocritical Care Updates in Cerebrovascular Disease No AccessArticle CommentaryRequest AccessFull TextAboutView Full TextView PDFView EPUBSections ToolsAdd to favoritesDownload citationsTrack citationsPermissions ShareShare onFacebookTwitterLinked InMendeleyReddit Jump toNo AccessArticle CommentaryRequest AccessFull TextNeurocritical Care Updates in Cerebrovascular Disease Ruchira M. Jha and Kevin N. Sheth Ruchira M. JhaRuchira M. Jha Correspondence to: Ruchira M. Jha, MD, MSc, Barrow Neurological Institute, 240-W Thomas Rd, Phoenix, AZ 85013. Email E-mail Address: [email protected] https://orcid.org/0000-0002-3047-7649 Barrow Neurological Institute and St. Joseph's Hospital & Medical Center, Phoenix, AZ (R.M.J.). Search for more papers by this author and Kevin N. ShethKevin N. Sheth https://orcid.org/0000-0003-2003-5473 Yale School of Medicine, New Haven, CT (K.N.S.). Search for more papers by this author Originally published15 Aug 2022https://doi.org/10.1161/STROKEAHA.122.038881Stroke. 2022;53:2954–2957FootnotesThe opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.For Sources of Funding and Disclosures, see page 2956.Correspondence to: Ruchira M. Jha, MD, MSc, Barrow Neurological Institute, 240-W Thomas Rd, Phoenix, AZ 85013. Email ruchira.[email protected]orgReferences1. Winkler EA, Kim CN, Ross JM, Garcia JH, Gil E, Oh I, Chen LQ, Wu D, Catapano JS, Raygor K, et al. A single-cell atlas of the normal and malformed human brain vasculature.Science. 2022; 375:eabi7377. doi: 10.1126/science.abi7377Google Scholar2. Baak LM, Wagenaar N, van der Aa NE, Groenendaal F, Dudink J, Tataranno ML, Mahamuud U, Verhage CH, Eijsermans RMJC, Smit LS, et al. Feasibility and safety of intranasally administered mesenchymal stromal cells after perinatal arterial ischaemic stroke in the Netherlands (PASSIoN): a first-in-human, open-label intervention study.Lancet Neurol. 2022; 21:528–536. doi: 10.1016/S1474-4422(22)00117-XCrossrefGoogle Scholar3. Yoshimura S, Sakai N, Yamagami H, Uchida K, Beppu M, Toyoda K, Matsumaru Y, Matsumoto Y, Kimura K, Takeuchi M, et al. Endovascular therapy for acute stroke with a large ischemic region.N Engl J Med. 2022; 386:1303–1313. doi: 10.1056/NEJMoa2118191CrossrefGoogle Scholar4. Jovin TG, Nogueira RG, Lansberg MG, Demchuk AM, Martins SO, Mocco J, Ribo M, Jadhav AP, Ortega-Gutierrez S, Hill MD, et al. Thrombectomy for anterior circulation stroke beyond 6 h from time last known well (AURORA): a systematic review and individual patient data meta-analysis.Lancet. 2022; 399:249–258. doi: 10.1016/S0140-6736(21)01341-6CrossrefMedlineGoogle Scholar5. Sarraj A, Parsons M, Bivard A, Hassan AE, Abraham MG, Wu T, Kleinig T, Lin L, Chen C, Levi C, et al; SELECT Investigators, the EXTEND-IA Investigators, the EXTEND-IA TNK Investigators, the EXTEND-IA TNK Part II Investigators, and the INSPIRE Study Group. Endovascular thrombectomy versus medical management in isolated M2 occlusions: pooled patient-level analysis from the EXTEND-IA Trials, INSPIRE, and SELECT studies.Ann Neurol. 2022; 91:629–639. doi: 10.1002/ana.26331CrossrefGoogle Scholar6. Sarraj A, Grotta JC, Pujara DK, Shaker F, Tsivgoulis G. Triage imaging and outcome measures for large core stroke thrombectomy - a systematic review and meta-analysis.J Neurointerv Surg. 2020; 12:1172–1179. doi: 10.1136/neurintsurg-2019-015509Google Scholar7. Liu X, Dai Q, Ye R, Zi W, Liu Y, Wang H, Zhu W, Ma M, Yin Q, Li M, et al; BEST Trial Investigators. Endovascular treatment versus standard medical treatment for vertebrobasilar artery occlusion (BEST): an open-label, randomised controlled trial.Lancet Neurol. 2020; 19:115–122. doi: 10.1016/S1474-4422(19)30395-3CrossrefMedlineGoogle Scholar8. Langezaal LCM, van der Hoeven EJRJ, Mont’Alverne FJA, de Carvalho JJF, Lima FO, Dippel DWJ, van der Lugt A, Lo RTH, Boiten J, Lycklama À Nijeholt GJ, et al; BASICS Study Group. Endovascular therapy for stroke due to basilar-artery occlusion.N Engl J Med. 2021; 384:1910–1920. doi: 10.1056/NEJMoa2030297CrossrefMedlineGoogle Scholar9. Jha RM, Sheth KN. Neurocritical care updates in cerebrovascular disease.Stroke. 2021; 52:2436–2439. doi: 10.1161/STROKEAHA.121.033291LinkGoogle Scholar10. Katsanos AH, Malhotra K, Ahmed N, Seitidis G, Mistry EA, Mavridis D, Kim JT, Veroniki AA, Maier I, Matusevicius M, et al. Blood pressure after endovascular thrombectomy and outcomes in patients with acute ischemic stroke: an individual patient data meta-analysis.Neurology. 2022; 98:e291–e301. doi: 10.1212/WNL.0000000000013049CrossrefGoogle Scholar11. Hemphill JC, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, Fung GL, Goldstein JN, Macdonald RL, Mitchell PH, et al; American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association.Stroke. 2015; 46:2032–2060. doi: 10.1161/STR.0000000000000069LinkGoogle Scholar12. Vrselja Z, Daniele SG, Silbereis J, Talpo F, Morozov YM, Sousa AMM, Tanaka BS, Skarica M, Pletikos M, Kaur N, et al. Restoration of brain circulation and cellular functions hours post-mortem.Nature. 2019; 568:336–343. doi: 10.1038/s41586-019-1099-1CrossrefMedlineGoogle Scholar13. Andersen LW, Isbye D, Kjærgaard J, Kristensen CM, Darling S, Zwisler ST, Fisker S, Schmidt JC, Kirkegaard H, Grejs AM, et al. Effect of vasopressin and methylprednisolone vs placebo on return of spontaneous circulation in patients with in-hospital cardiac arrest: A Randomized Clinical Trial.JAMA. 2021; 326:1586–1594. doi: 10.1001/jama.2021.16628CrossrefGoogle Scholar14. Ruijter BJ, Keijzer HM, Tjepkema-Cloostermans MC, Blans MJ, Beishuizen A, Tromp SC, Scholten E, Horn J, van Rootselaar AF, Admiraal MM, et al; TELSTAR Investigators. Treating rhythmic and periodic EEG patterns in comatose survivors of cardiac arrest.N Engl J Med. 2022; 386:724–734. doi: 10.1056/NEJMoa2115998CrossrefGoogle Scholar15. Grindegård L, Cronberg T, Backman S, Blennow K, Dankiewicz J, Friberg H, Hassager C, Horn J, Kjaer TW, Kjaergaard J, et al. Association between EEG patterns and serum neurofilament light after cardiac arrest: a post hoc analysis of the TTM trial.Neurology. 2022; 98:e2487–e2498. doi: 10.1212/WNL.0000000000200335Google Scholar16. Lee JW, Sreepada LP, Bevers MB, Li K, Scirica BM, Santana da Silva D, Henderson GV, Bay C, Lin AP. Magnetic resonance spectroscopy of hypoxic-ischemic encephalopathy after cardiac arrest.Neurology. 2022; 98:e1226–e1237. doi: 10.1212/WNL.0000000000013297CrossrefGoogle Scholar17. Sharma K, John M, Zhang S, Gronseth G. Serum neuron-specific enolase thresholds for predicting postcardiac arrest outcome: a systematic review and meta-analysis.Neurology. 2022; 98:e62–e72. doi: 10.1212/WNL.0000000000012967CrossrefGoogle Scholar18. Endo H, Hagihara Y, Kimura N, Takizawa K, Niizuma K, Togo O, Tominaga T. Effects of clazosentan on cerebral vasospasm-related morbidity and all-cause mortality after aneurysmal subarachnoid hemorrhage: two randomized phase 3 trials in Japanese patients.J. Neurosurg. 2022;1–11. doi: 10.3171/2022.2.JNS212914Google Scholar19. Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A, Vajkoczy P, Wanke I, Bach D, Frey A, et al. Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2).Lancet Neurol. 2011; 10:618–625. doi: 10.1016/S1474-4422(11)70108-9CrossrefMedlineGoogle Scholar20. Weiss M, Albanna W, Conzen C, Megjhani M, Tas J, Seyfried K, Kastenholz N, Veldeman M, Schmidt TP, Schulze-Steinen H, et al. Optimal cerebral perfusion pressure during delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage.Crit Care Med. 2022; 50:183–191. doi: 10.1097/CCM.0000000000005396CrossrefGoogle Scholar21. Chen HY, Elmer J, Zafar SF, Ghanta M, Moura Junior V, Rosenthal ES, Gilmore EJ, Hirsch LJ, Zaveri HP, Sheth KN, et al. Combining transcranial doppler and EEG data to predict delayed cerebral ischemia after subarachnoid hemorrhage.Neurology. 2022; 98:e459–e469. doi: 10.1212/WNL.0000000000013126CrossrefGoogle Scholar eLetters(0)eLetters should relate to an article recently published in the journal and are not a forum for providing unpublished data. Comments are reviewed for appropriate use of tone and language. Comments are not peer-reviewed. Acceptable comments are posted to the journal website only. Comments are not published in an issue and are not indexed in PubMed. Comments should be no longer than 500 words and will only be posted online. References are limited to 10. Authors of the article cited in the comment will be invited to reply, as appropriate.Comments and feedback on AHA/ASA Scientific Statements and Guidelines should be directed to the AHA/ASA Manuscript Oversight Committee via its Correspondence page.Sign In to Submit a Response to This Article Previous Back to top Next FiguresReferencesRelatedDetails September 2022Vol 53, Issue 9 Advertisement Article InformationMetrics © 2022 American Heart Association, Inc.https://doi.org/10.1161/STROKEAHA.122.038881PMID: 35968703 Originally publishedAugust 15, 2022 Keywordsmesenchymal stromal cellcerebral hemorrhageischemic strokethrombectomyprecision medicinesubarachnoid hemorrhagecardiac arrestPDF download Advertisement