An alternately optimized generative adversarial network with texture and content constraints for deformable registration of 3D ultrasound images

人工智能 图像配准 计算机科学 稳健性(进化) 相似性(几何) 模式识别(心理学) 计算机视觉 特征(语言学) 公制(单位) 特征向量 图像(数学) 基因 哲学 生物化学 经济 语言学 化学 运营管理
作者
Jiaju Zhang,Tianyu Fu,Yuanyuan Wang,Jingshu Li,Deqiang Xiao,Jingfan Fan,Yucong Lin,Hong Song,Fei Ji,Meng Yang,Jian Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (14): 145006-145006 被引量:4
标识
DOI:10.1088/1361-6560/ace098
摘要

Objective.3D ultrasound non-rigid registration is significant for intraoperative motion compensation. Nevertheless, distorted textures in the registered image due to the poor image quality and low signal-to-noise ratio of ultrasound images reduce the accuracy and efficiency of the existing methods.Approach.A novel 3D ultrasound non-rigid registration objective function with texture and content constraints in both image space and multiscale feature space based on an unsupervised generative adversarial network based registration framework is proposed to eliminate distorted textures. A similarity metric in the image space is formulated based on combining self-structural constraint with intensity to strengthen the robustness to abnormal intensity change compared with common intensity-based metrics. The proposed framework takes two discriminators as feature extractors to formulate the texture and content similarity between the registered image and the fixed image in the multiscale feature space respectively. A distinctive alternating training strategy is established to jointly optimize the combination of various similarity loss functions to overcome the difficulty and instability of training convergence and balance the training of generator and discriminators.Main results.Compared with five registration methods, the proposed method is evaluated both with small and large deformations, and achieves the best registration accuracy with average target registration error of 1.089 mm and 2.139 mm in cases of small and large deformations, respectively. The performance on peak signal to noise ratio (PSNR) and structural similarity (SSIM) also proves the effective constraints on distorted textures of the proposed method (PSNR is 31.693 dB and SSIM is 0.9 in the case of small deformation; PSNR is 28.177 dB and SSIM is 0.853 in the case of large deformation).Significance.The proposed 3D ultrasound non-rigid registration method based on texture and content constraints with the distinctive alternating training strategy can eliminate the distorted textures with improving the registration accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
濮阳乐双应助顺利采纳,获得20
刚刚
mtf完成签到,获得积分20
4秒前
韩八子发布了新的文献求助10
4秒前
CodeCraft应助霸气安蕾采纳,获得10
5秒前
Cecilia_kou完成签到 ,获得积分10
5秒前
hong驳回了小昔应助
7秒前
chao完成签到,获得积分10
7秒前
8秒前
YanDongXu完成签到 ,获得积分10
8秒前
xh发布了新的文献求助10
9秒前
gxq完成签到,获得积分20
9秒前
研友_LjbjzL完成签到,获得积分10
9秒前
11秒前
我是老大应助Lemon采纳,获得30
14秒前
14秒前
14秒前
HJJHJH发布了新的文献求助10
14秒前
14秒前
Micro9发布了新的文献求助10
15秒前
15秒前
啊娴仔发布了新的文献求助10
15秒前
15秒前
lumeicheng完成签到 ,获得积分10
16秒前
16秒前
17秒前
SciGPT应助Zhao采纳,获得10
18秒前
霸气安蕾发布了新的文献求助10
19秒前
煎饼果子发布了新的文献求助10
20秒前
明亮灭绝发布了新的文献求助10
20秒前
四福祥发布了新的文献求助10
21秒前
荔枝发布了新的文献求助10
21秒前
马嘎嘎发布了新的文献求助10
21秒前
infinitear完成签到,获得积分10
21秒前
FashionBoy应助马嘎嘎采纳,获得10
25秒前
Kevin完成签到,获得积分10
27秒前
27秒前
123321完成签到,获得积分10
28秒前
Zhao完成签到,获得积分10
28秒前
Alan完成签到 ,获得积分10
28秒前
赘婿应助理li采纳,获得10
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811186
求助须知:如何正确求助?哪些是违规求助? 3355562
关于积分的说明 10376588
捐赠科研通 3072444
什么是DOI,文献DOI怎么找? 1687425
邀请新用户注册赠送积分活动 811665
科研通“疑难数据库(出版商)”最低求助积分说明 766719