已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Image denoising using adaptive bi-dimensional stochastic resonance system

计算机科学 随机共振 噪音(视频) 中值滤波器 非线性滤波器 非线性系统 滤波器(信号处理) 人工智能 自适应滤波器 峰值信噪比 图像处理 算法 图像(数学) 计算机视觉 滤波器设计 物理 量子力学
作者
Shan Wang,Pingjuan Niu,Yong Li,Jiangkai Jia,Shuai Wang,Huichao Li,Bo Sun,Bin Zheng,Sun Xi-min
出处
期刊:Ferroelectrics [Taylor & Francis]
卷期号:609 (1): 148-157 被引量:1
标识
DOI:10.1080/00150193.2023.2198947
摘要

AbstractUsing stochastic resonance (SR) mechanism, the output signal can be enhanced by adding noise to the nonlinear system. Therefore, an image denoising algorithm based on adaptive bi-dimensional stochastic resonance (ABSR) is proposed in this paper. Firstly, the image is sampled as a bi-dimensional signal, and an adaptive bi-dimensional dynamic nonlinear system model is constructed. The peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) of the output image are used as the double evaluation model of the adaptive system, and the optimal parameters of the model are automatically obtained by adjusting the parameters of the dynamic nonlinear system using the reverse positioning method. Compared with the traditional mean filter, median filter and one-dimensional stochastic resonance, the image restoration effect of dynamic adaptive bi-dimensional stochastic resonance is more closer to the original image, and the histogram, PSNR and SSIM of the output image are also significantly better than the other three methods. The results show that dynamic adaptive bi-dimensional stochastic resonance has better denoising effect and better robustness to the change of noise intensity in image processing.Keywords: Image denoisingstochastic resonancebi-dimensional system AcknowledgementsThe authors would like to thank foreign friends for proofreading the manuscript. The authors are also grateful to the anonymous reviewers for their valuable comments and suggestions.Additional informationFundingThis research was supported by [National Natural Science Foundation of China #1] under Grant [number 11672207]; [Tianjin Natural Science Foundation of China] under Grant [number 17JCYBJC15700]; and [research and application of key technologies of intelligent robot process automation] under Grant [number 1500/2022-72002B].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无花果应助儒雅的冷松采纳,获得10
2秒前
4秒前
6秒前
朱豪豪发布了新的文献求助10
6秒前
7秒前
7秒前
heihei发布了新的文献求助10
8秒前
8秒前
干净以珊发布了新的文献求助10
11秒前
徐福上发布了新的文献求助10
11秒前
11秒前
11秒前
T_MC郭发布了新的文献求助10
13秒前
大模型应助醉酒笑红尘采纳,获得10
14秒前
14秒前
Chalo发布了新的文献求助30
15秒前
hu发布了新的文献求助10
15秒前
小二郎应助干净以珊采纳,获得10
15秒前
科研通AI2S应助苏A尔采纳,获得10
18秒前
SongNan_Ding发布了新的文献求助10
19秒前
情怀应助sdfsdf采纳,获得10
20秒前
24秒前
背后的鹤轩完成签到,获得积分20
24秒前
ff完成签到 ,获得积分10
25秒前
27秒前
28秒前
万能图书馆应助hu采纳,获得10
28秒前
共享精神应助谨慎初兰采纳,获得10
31秒前
杨程喻发布了新的文献求助10
31秒前
32秒前
32秒前
田様应助醉酒笑红尘采纳,获得10
35秒前
star发布了新的文献求助10
39秒前
徐福上完成签到,获得积分10
40秒前
41秒前
称心的绿竹完成签到,获得积分10
42秒前
hu发布了新的文献求助10
44秒前
44秒前
47秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792253
求助须知:如何正确求助?哪些是违规求助? 3336501
关于积分的说明 10281144
捐赠科研通 3053220
什么是DOI,文献DOI怎么找? 1675522
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761436