Quantitative Radiological Features and Deep Learning for the Non-Invasive Evaluation of Programmed Death Ligand 1 Expression Levels in Gastric Cancer Patients: A Digital Biopsy Study

医学 队列 接收机工作特性 肿瘤科 癌症 内科学 生物标志物 活检 放射性武器 列线图 放射科 人工智能 计算机科学 生物化学 化学
作者
Wentao Xie,Zinian Jiang,Xiaoming Zhou,Xianxiang Zhang,Maoshen Zhang,Ruiqing Liu,Longbo Zheng,Fangjie Xin,Yun Lu,Dongsheng Wang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (7): 1317-1328 被引量:5
标识
DOI:10.1016/j.acra.2022.10.012
摘要

Programmed Death-Ligand 1 (PD-L1) is an important biomarker for patient selection of immunotherapy in gastric cancer (GC). This study aimed to construct and validate a non-invasive virtual biopsy system based on radiological features and clinical factors to predict the PD-L1 expression level in GC.217 patients who received gastrectomy for GC were consecutively enrolled in this study, with 157 patients from center 1 as the training cohort and 60 patients from center 2 as the external validation cohort. 1205 quantitative radiomics features were extracted from preprocessed pre-operative contrast-enhanced CT images of enrolled patients. A radiological signature was computed using a regression random forest model and was integrated with clinical factors in a multilayer perceptron. The performance of the digital biopsy system was evaluated by the receiver operating characteristic (ROC) curve and calibration curve in both the training and validation cohort.15 features were selected for the construction of radiological signature, which was significantly associated with expression levels of PD-L1 in both the training cohort (p<0.0001) and the external validation cohort (p<0.01). The hybrid deep learning model integrating the radiological signature and clinical factor could accurately distinguish GCs with high PD-L1 expression levels in both the training cohort (AUC = 0.806, 95%CI: 0.736-0.875) and the validation cohort (AUC = 0.784, 95%CI: 0.668-0.901).Our results indicate that the combination of deep learning and quantitative radiological features are potential approaches for the non-invasive evaluation of PD-L1 expression levels in GC. The digital biopsy system could provide valuable suggestive information for clinical decision-making of immunotherapy in GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙花完成签到 ,获得积分10
刚刚
月如钩发布了新的文献求助10
1秒前
pp关闭了pp文献求助
1秒前
wanci应助好好做人采纳,获得10
1秒前
2秒前
3秒前
4秒前
SYLH应助凶狠的鸣凤采纳,获得10
4秒前
脑洞疼应助musong采纳,获得10
5秒前
西柚完成签到 ,获得积分10
5秒前
小二郎应助HHHSean采纳,获得10
5秒前
一安发布了新的文献求助10
7秒前
州12完成签到,获得积分10
8秒前
AiX-zzzzz发布了新的文献求助10
8秒前
9秒前
俏皮碧玉完成签到,获得积分20
10秒前
好厉害杰瑞完成签到,获得积分10
10秒前
ljc完成签到,获得积分0
11秒前
HHHSean完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
周小鱼发布了新的文献求助10
15秒前
15秒前
钮祜禄小八完成签到,获得积分10
16秒前
16秒前
dingyifan发布了新的文献求助10
17秒前
科研通AI5应助妥妥采纳,获得10
17秒前
17秒前
18秒前
18秒前
19秒前
HHHSean发布了新的文献求助10
19秒前
musong发布了新的文献求助10
19秒前
21秒前
mltyyds发布了新的文献求助30
21秒前
华仔应助杨y采纳,获得10
21秒前
SYLH应助zzx采纳,获得10
21秒前
王SQ完成签到 ,获得积分10
21秒前
好好做人发布了新的文献求助10
21秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807468
求助须知:如何正确求助?哪些是违规求助? 3352217
关于积分的说明 10357930
捐赠科研通 3068242
什么是DOI,文献DOI怎么找? 1684895
邀请新用户注册赠送积分活动 810014
科研通“疑难数据库(出版商)”最低求助积分说明 765853