Co-assembled Nanocarriers of De Novo Thiol-Activated Hydrogen Sulfide Donors with an RGDFF Pentapeptide for Targeted Therapy of Non-Small-Cell Lung Cancer

纳米载体 靶向治疗 五肽重复序列 癌症研究 体内 生物物理学 材料科学 化学 细胞生物学 药理学 癌症 纳米技术 生物化学 医学 生物 纳米颗粒 内科学 生物技术
作者
Hong Chen,Xiaoying Guan,Qianqian Liu,Longcui Yang,Jun Guo,Feng Gao,Yueheng Qi,Xiongting Wu,Feng Zhang,Xiumei Tian
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (48): 53475-53490 被引量:8
标识
DOI:10.1021/acsami.2c14570
摘要

Hydrogen sulfide releasing agents (or H2S donors) have been recognized gasotransmitters with potent cytoprotective and anticancer properties. However, the clinical application of H2S donors has been hampered by their fast H2S-release, instability, and lack of tumor targeting, despite the unclear molecular mechanism of H2S action. Here we rationally designed an amphiphilic pentapeptide (RGDFF) to coassemble with the de novo designed thiol-activated H2S donors (CL2/3) into nanocarriers for targeted therapy of non-small-cell lung cancer, which has been proved as a one-stone-three-birds strategy. The coassembly approach simply solved the solubility issue of CL2/3 by the introduction of electron-donating groups (phenyl rings) to slow down the H2S release while dramatically improving their biocompatible interface, circulation time, slow release of H2S, and tumor targeting. Experimental results confirmed that as-prepared coassembled nanocarriers can significantly induce the intrinsic apoptotic, effectively arrest cell cycle at the G2/M phase, inhibit H2S-producing enzymes, and lead to mitochondrial dysfunction by increasing intracellular ROS production in H1299 cells. The mouse tumorigenesis experiments further confirmed the in vivo anticancer effects of the coassembled nanocarriers, and such treatment made tumors more sensitive to radiotherapy then improved the prognosis of tumor-bearing mice, which holds great promise for developing a new combined approach for NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Xenia完成签到 ,获得积分10
2秒前
CodeCraft应助小机灵鬼采纳,获得10
3秒前
qqqyoyoyo完成签到,获得积分10
3秒前
4秒前
pipi发布了新的文献求助10
4秒前
Erueka完成签到,获得积分10
5秒前
5秒前
Sg完成签到,获得积分10
5秒前
彩色的荔枝完成签到 ,获得积分10
6秒前
过过发布了新的文献求助10
7秒前
qqqyoyoyo发布了新的文献求助10
7秒前
深居简出发布了新的文献求助30
8秒前
有梦想的咸鱼完成签到,获得积分10
8秒前
可爱的函函应助遇见飞儿采纳,获得10
8秒前
9秒前
追寻羿完成签到 ,获得积分10
9秒前
大熊完成签到 ,获得积分10
10秒前
13秒前
14秒前
落寞的又菡完成签到,获得积分10
14秒前
冰魂应助pipi采纳,获得10
14秒前
蜡笔小新完成签到,获得积分10
15秒前
香草冰淇淋完成签到,获得积分10
16秒前
青山发布了新的文献求助50
18秒前
what完成签到,获得积分10
20秒前
LLL完成签到,获得积分10
22秒前
Long发布了新的文献求助10
22秒前
田様应助王佳豪采纳,获得10
23秒前
fiona完成签到,获得积分10
23秒前
24秒前
星星又累完成签到,获得积分10
25秒前
搜文献的北北完成签到,获得积分10
26秒前
26秒前
光亮的冰薇完成签到 ,获得积分10
27秒前
what发布了新的文献求助10
27秒前
27秒前
初小花完成签到,获得积分10
28秒前
深居简出完成签到,获得积分20
28秒前
jiesenya完成签到,获得积分10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777834
求助须知:如何正确求助?哪些是违规求助? 3323349
关于积分的说明 10213997
捐赠科研通 3038590
什么是DOI,文献DOI怎么找? 1667553
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758290