Effect of Freestream Noise on Hypersonic Crossflow-Induced Boundary-Layer Transition

自由流 高超音速 边界层 机械 后掠翼 材料科学 马赫数 航空航天工程 噪音(视频) 高超音速流动 物理 雷诺数 空气动力学 湍流 计算机科学 工程类 人工智能 图像(数学)
作者
Andrew N. Bustard,Thomas J. Juliano,Harrison B. Yates,Joseph S. Jewell,Thomas J. Juliano
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:60 (12): 6951-6957 被引量:1
标识
DOI:10.2514/1.j060376
摘要

No AccessTechnical NotesEffect of Freestream Noise on Hypersonic Crossflow-Induced Boundary-Layer TransitionAndrew N. Bustard, Thomas J. Juliano, Harrison B. Yates, Mark Noftz and Joseph S. JewellAndrew N. BustardUniversity of Notre Dame, Notre Dame, Indiana 46556-5684*Graduate Student, Department of Aerospace and Mechanical Engineering. Student Member AIAA.Search for more papers by this author, Thomas J. Juliano https://orcid.org/0000-0002-9362-6007University of Notre Dame, Notre Dame, Indiana 46556-5684†Associate Professor, Department of Aerospace and Mechanical Engineering. Associate Fellow AIAA.Search for more papers by this author, Harrison B. YatesJohns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723‡Senior Professional Staff. Member AIAA.Search for more papers by this author, Mark NoftzPurdue University, West Lafayette, Indiana 47907-2045§Graduate Student, School of Aeronautics and Astronautics. Student Member AIAA.Search for more papers by this author and Joseph S. Jewell https://orcid.org/0000-0002-4047-9998Purdue University, West Lafayette, Indiana 47907-2045¶Assistant Professor, School of Aeronautics and Astronautics. Associate Fellow AIAA.Search for more papers by this authorPublished Online:1 Nov 2022https://doi.org/10.2514/1.J060376SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Schuele C. Y., “Control of Stationary Crossflow Modes Using Stationary Patterned Roughness and DBD Plasma Actuators at Mach 3.5,” Ph.D. Thesis, Univ. of Notre Dame, Notre Dame, Indiana, Sept. 2011. Google Scholar[2] Li F., Choudhari M., Chang C. and White J., “Analysis of Instabilities in Non-Axisymmetric Hypersonic Boundary Layers over Cones,” AIAA Paper 2010-4643, June 2010. LinkGoogle Scholar[3] Saric W. S., Reed H. L. and White E. B., “Stability and Transition of Three-Dimensional Boundary Layers,” Annual Review of Fluid Mechanics, Vol. 35, No. 1, 2003, pp. 413–440. https://doi.org/10.1146/annurev.fluid.35.101101.161045 CrossrefGoogle Scholar[4] Corke T., Arndt A., Matlis E. and Semper M., “Control of Stationary Cross-Flow Modes in a Mach 6 Boundary Layer Using Patterned Roughness,” Journal of Fluid Mechanics, Vol. 856, Oct. 2018, pp. 822–849. https://doi.org/10.1017/jfm.2018.636 CrossrefGoogle Scholar[5] Edelman J. B. and Schneider S. P., “Using Discrete and Distributed Roughness to Generate Stationary Crossflow Waves in a Mach 6 Quiet Tunnel,” AIAA Paper 2019-2968, June 2019. Google Scholar[6] Arndt A., Corke T., Matlis E. and Semper M., “Controlled Stationary/Travelling Cross-Flow Mode Interaction in a Mach 6.0 Boundary Layer,” Journal of Fluid Mechanics, Vol. 887, No. A30, 2020, pp. 1–25. https://doi.org/10.1017/jfm.2020.15 Google Scholar[7] Arnal D. and Délery J., “Laminar-Turbulent Transition and Shock Wave/Boundary Layer Interaction. EN-AVT-116-04,” Critical Technologies for Hypersonic Vehicle Development, NATO Research and Technology Organization, Neuilly-sur-Seine, France, 2004, pp. 1–46. Google Scholar[8] Craig S. A. and Saric W. S., “Crossflow Instability in a Hypersonic Boundary Layer,” Journal of Fluid Mechanics, Vol. 808, Jan. 2016, pp. 224–244. https://doi.org/10.1017/jfm.2016.643 CrossrefGoogle Scholar[9] Edelman J. B. and Schneider S. P., “Secondary Instabilities of Hypersonic Stationary Crossflow Waves,” AIAA Journal, Vol. 56, No. 1, 2018, pp. 182–192. https://doi.org/10.2514/1.J056028 LinkGoogle Scholar[10] Edelman J. B., “Nonlinear Growth and Breakdown of the Hypersonic Crossflow Instability,” Ph.D. Thesis, Purdue Univ., School of Aeronautics & Astronautics, West Lafayette, IN, Aug. 2019. Google Scholar[11] Schneider S. P., “Effects of High-Speed Tunnel Noise on Laminar-Turbulent Transition,” Journal of Spacecraft and Rockets, Vol. 38, No. 3, 2001, pp. 323–333. https://doi.org/10.2514/2.3705 LinkGoogle Scholar[12] Swanson E. O., “Boundary-Layer Transition on Cones at Angle of Attack in a Mach-6 Quiet Tunnel,” Ph.D. Thesis, Purdue Univ., West Lafayette, Indiana, May 2008. Google Scholar[13] Dinzl D. J. and Candler G. V., “Direct Simulation of Hypersonic Crossflow Instability on an Elliptic Cone,” AIAA Journal, Vol. 55, No. 6, 2017, pp. 1769–1782. https://doi.org/10.2514/1.J055130 LinkGoogle Scholar[14] Kocian T. S., Moyes A. J., Reed H. L., Craig S. A., Saric W. S., Edelman J. B. and Schneider S. P., “Hypersonic Crossflow Instability,” Journal of Spacecraft and Rockets, Vol. 56, No. 2, 2019, pp. 432–446. https://doi.org/10.2514/1.A34289 LinkGoogle Scholar[15] King R., “Three-Dimensional Boundary-Layer Transition on a Cone at Mach 3.5,” Experiments in Fluids, Vol. 13, No. 5, 1992, pp. 305–314. https://doi.org/10.1007/BF00209502 CrossrefGoogle Scholar[16] Juliano T. J., Borg M. P. and Schneider S. P., “Quiet Tunnel Measurements of HIFiRE-5 Boundary-Layer Transition,” AIAA Journal, Vol. 53, No. 4, 2015, pp. 832–846. https://doi.org/10.2514/1.J053189 LinkGoogle Scholar[17] Juliano T. J., Paquin L. A. and Borg M. P., “Measurement of HIFiRE-5 Boundary-Layer Transition in a Mach-6 Quiet Tunnel with Infrared Thermography,” AIAA Journal, Vol. 57, No. 5, 2019, pp. 2001–2010. https://doi.org/10.2514/1.J056750 LinkGoogle Scholar[18] Borg M. P. and Kimmel R. L., “Measurements of Crossflow Instability Modes for HIFiRE-5 at Angle of Attack,” AIAA Paper 2017-1681, Jan. 2017. LinkGoogle Scholar[19] Willems S., Gülhan A., Juliano T. J., Kimmel R. L. and Schneider S. P., “Laminar to Turbulent Transition on the HIFiRE-1 Cone at Mach 7 and High Angle of Attack,” AIAA Paper 2014-0428, Jan. 2014. LinkGoogle Scholar[20] Juliano T. J., Kimmel R. L., Willems S., Gülhan A. and Schneier S. P., “HIFiRE-1 Surface Pressure Fluctuations from High Reynolds, High Angle Ground Test,” AIAA Paper 2014-0429, Jan. 2014. LinkGoogle Scholar[21] Juliano T. J., Kimmel R. L., Willems S., Gülhan A. and Wagnild R. M., “HIFiRE-1 Boundary-Layer Transition: Ground Test Results and Stability Analysis,” AIAA Paper 2015-1736, Jan. 2015. Google Scholar[22] Yates H. B., Juliano T. J., Matlis E. H. and Tufts M. W., “Plasma-Actuated Flow Control of Hypersonic Crossflow-Induced Boundary-Layer Transition in a Mach-6 Quiet Tunnel,” AIAA Paper 2018-1076, Jan. 2018. Google Scholar[23] Yates H. B., Juliano T. J., Matlis E. H. and Tufts M. W., “Crossflow Transition Acceleration with Plasma Actuators in Hypersonic Quiet Flow,” AIAA Paper 2019-1909, Jan. 2019. Google Scholar[24] Yates H. B., “Plasma-Actuated Flow Control of Hypersonic Crossflow-Induced Boundary-Layer Transition in a Mach-6 Quiet Tunnel,” Ph.D. Thesis, Dept. of Aerospace & Mechanical Engineering, Univ. of Notre Dame, Notre Dame, IN, Dec. 2019. Google Scholar[25] Yates H. B., Tufts M. W. and Juliano T. J., “Analysis of the Hypersonic Crossflow Instability with Experimental Wavenumber Distributions,” Journal of Fluid Mechanics, Vol. 883, No. A50, 2020, pp. 1–34. https://doi.org/10.1017/jfm.2019.864 Google Scholar[26] Yates H. B., Matlis E. M., Juliano T. J. and Tufts M. W., “Plasma-Actuated Flow Control of Hypersonic Crossflow-Induced Boundary-Layer Transition,” AIAA Journal, Vol. 58, No. 5, 2020, pp. 2093–2108. https://doi.org/10.2514/1.J058981 LinkGoogle Scholar[27] Hirschen C. and Gülhan A., “Infrared Thermography and Pitot Pressure Measurements of a Scramjet Nozzle Flowfield,” Journal of Propulsion and Power, Vol. 25, No. 5, 2009, pp. 1108–1120. https://doi.org/10.2514/1.41787 LinkGoogle Scholar[28] Schneider S. P., “Development of Hypersonic Quiet Tunnels,” Journal of Spacecraft and Rockets, Vol. 45, No. 4, 2008, pp. 641–664. https://doi.org/10.2514/1.34489 LinkGoogle Scholar[29] Juliano T. J., Schneider S. P. and Aradag S., “Quiet-Flow Ludwieg Tube for Hypersonic Transition Research,” AIAA Journal, Vol. 46, No. 7, 2008, pp. 1757–1763. https://doi.org/10.2514/1.34640 LinkGoogle Scholar[30] Chynoweth B. C., “A New Roughness Array For Controlling the Nonlinear Breakdown of Second-Mode Waves at Mach 6,” Master’s Thesis, Purdue Univ., West Lafayette, Indiana, Jan. 2015. Google Scholar[31] Gordeyev S., De Lucca N., Jumper E. J., Hird K., Juliano T. J., Gregory J. W., Thordahl J. and Wittich D. J., “Comparison of Unsteady Pressure Fields on Turrets with Different Surface Features Using Pressure-Sensitive Paint,” Experiments in Fluids, Vol. 55, No. 1, 2014, p. 1661. https://doi.org/10.1007/s00348-013-1661-9 CrossrefGoogle Scholar[32] Boyd C. F. and Howell A., “Numerical Investigation of One-Dimensional Heat-Flux Calculations,” NSWCDD/TR-94/114, Dahlgren Div. Naval Surface Warfare Center, Silver Spring, MD, Oct. 1994. Google Scholar[33] Juliano T. J., Adamczak D. and Kimmel R. L., “HIFiRE-5 Flight Test Heating Analysis,” AIAA Paper 2014-0076, Jan. 2014. LinkGoogle Scholar[34] Rataczak J. A., Running C. L. and Juliano T. J., “Verification of Quantitative Infrared Thermography Heat-Flux Measurements,” Experimental Thermal and Fluid Science, Vol. 121, No. 110274, 2021, pp. 1–8. Google Scholar[35] Running C. L., Juliano T. J., Jewell J. S., Borg M. P. and Kimmel R. L., “Hypersonic Shock-Wave/Boundary-Layer Interactions on a Cone/Flare,” Experimental Thermal and Fluid Science, Vol. 109, Dec. 2019, Paper 109911. https://doi.org/10.1016/j.expthermflusci.2019.109911 Google Scholar[36] Casper K. M., Beresh S. J. and Schneider S. P., “Pressure Fluctuations Beneath Instability Wavepackets and Turbulent Spots in a Hypersonic Boundary Layer,” Journal of Fluid Mechanics, Vol. 756, Oct. 2014, pp. 1058–1091. https://doi.org/10.1017/jfm.2014.475 CrossrefGoogle Scholar[37] Juliano T. J., Paquin L. A. and Borg M. P., “HIFiRE-5 Boundary-Layer Transition Measured in a Mach-6 Quiet Tunnel with Infrared Thermography,” AIAA Journal, Vol. 57, No. 5, 2019, pp. 2001–2010. https://doi.org/10.2514/1.J056750 LinkGoogle Scholar[38] Edelman J. B., Casper K. M., Henfling J. F., Spillers R. W. and Schneider S. P., “Crossflow Transition on a Pitched Cone at Mach 8,” AIAA Paper 2017-4299, June 2017. LinkGoogle Scholar[39] Kimmel R. L., Adamczak D., Borg M. P., Jewell J. S., Juliano T. J., Stanfield S. and Berger K., “First and Fifth Hypersonic International Flight Research Experimentation’s Flight and Ground Tests,” Journal of Spacecraft and Rockets, Vol. 56, No. 2, 2019, pp. 421–431. https://doi.org/10.2514/1.A34287. LinkGoogle Scholar[40] Balakumar P. and Owens L., “Stability of Hypersonic Boundary Layers on a Cone at an Angle of Attack,” AIAA Paper 2010-4718, June 2010. LinkGoogle Scholar[41] Edelman J., Chynoweth B. C., McKiernan G., Sweeney C. J. and Schneider S. P., “Instability Measurements in the Boeing/AFOSR Mach-6 Quiet Tunnel,” 46th AIAA Fluid Dynamics Conference, AIAA, Reston, VA, 2016, pp. 1–32. Google Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Volume 60, Number 12December 2022 CrossmarkInformationCopyright © 2022 by Thomas Juliano. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamic PerformanceAerodynamicsAerospace SciencesBoundary LayersComputing, Information, and CommunicationFlow RegimesFluid DynamicsMaterial PropertiesMaterialsMaterials and Structural MechanicsPolymersSignal ProcessingSurface PropertiesVortex Dynamics KeywordsBoundary Layer TransitionFreestreamVorticesStanton NumberPSDAngle of AttackPolyether Ether KetoneSurface RoughnessTurbulent FlowNozzle WallsAcknowledgmentsThis work was supported by the Air Force Office of Scientific Research under award number FA9550-16-1-0320. Brandon Chynoweth had valuable thoughts that were helpful for the project.PDF Received19 December 2020Accepted28 August 2022Published online1 November 2022

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丽丽发布了新的文献求助10
1秒前
雪碧发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
sci发布了新的文献求助10
4秒前
风清扬发布了新的文献求助10
4秒前
nu发布了新的文献求助10
5秒前
YOOO发布了新的文献求助10
9秒前
科研通AI6.2应助灿澈采纳,获得10
11秒前
12秒前
13秒前
nuyoah完成签到,获得积分10
15秒前
15秒前
华仔应助雪碧采纳,获得10
16秒前
小蘑菇应助危机的百褶裙采纳,获得10
17秒前
21秒前
21秒前
在水一方应助LongHua采纳,获得10
21秒前
田様应助YOOO采纳,获得10
22秒前
风清扬发布了新的文献求助10
24秒前
24秒前
25秒前
疯狂的青亦完成签到,获得积分10
28秒前
平常冬天发布了新的文献求助10
29秒前
29秒前
张张张xxx发布了新的文献求助10
30秒前
gfqdts66完成签到 ,获得积分10
31秒前
31秒前
1900发布了新的文献求助10
34秒前
asdfqwer发布了新的文献求助10
35秒前
tyz发布了新的文献求助30
36秒前
CipherSage应助slx采纳,获得10
39秒前
涛神发布了新的文献求助30
45秒前
常常完成签到,获得积分10
46秒前
47秒前
48秒前
脑洞疼应助nana采纳,获得10
48秒前
0美团外卖0完成签到,获得积分10
49秒前
老baby应助K_K采纳,获得10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
生活在欺瞒的年代:傅树介政治斗争回忆录 260
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5878644
求助须知:如何正确求助?哪些是违规求助? 6554599
关于积分的说明 15684933
捐赠科研通 4997795
什么是DOI,文献DOI怎么找? 2693177
邀请新用户注册赠送积分活动 1635155
关于科研通互助平台的介绍 1592699