Multimodal Triplet Attention Network for Brain Disease Diagnosis

判别式 计算机科学 人工智能 模式 模式识别(心理学) 特征提取 磁共振弥散成像 特征(语言学) 代表(政治) 特征向量 神经影像学 机器学习 磁共振成像 医学 放射科 社会科学 语言学 哲学 精神科 社会学 政治 政治学 法学
作者
Qi Zhu,Heyang Wang,Bingliang Xu,Zhiqiang Zhang,Wei Shao,Daoqiang Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (12): 3884-3894 被引量:22
标识
DOI:10.1109/tmi.2022.3199032
摘要

Multi-modal imaging data fusion has attracted much attention in medical data analysis because it can provide complementary information for more accurate analysis. Integrating functional and structural multi-modal imaging data has been increasingly used in the diagnosis of brain diseases, such as epilepsy. Most of the existing methods focus on the feature space fusion of different modalities but ignore the valuable high-order relationships among samples and the discriminative fused features for classification. In this paper, we propose a novel framework by fusing data from two modalities of functional MRI (fMRI) and diffusion tensor imaging (DTI) for epilepsy diagnosis, which effectively captures the complementary information and discriminative features from different modalities by high-order feature extraction with the attention mechanism. Specifically, we propose a triple network to explore the discriminative information from the high-order representation feature space learned from multi-modal data. Meanwhile, self-attention is introduced to adaptively estimate the degree of importance between brain regions, and the cross-attention mechanism is utilized to extract complementary information from fMRI and DTI. Finally, we use the triple loss function to adjust the distance between samples in the common representation space. We evaluate the proposed method on the epilepsy dataset collected from Jinling Hospital, and the experiment results demonstrate that our method is significantly superior to several state-of-the-art diagnosis approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
qq完成签到,获得积分10
刚刚
刚刚
spenley发布了新的文献求助10
刚刚
传奇3应助chuchu采纳,获得10
刚刚
独特背包完成签到,获得积分10
1秒前
1秒前
2秒前
生椰拿铁不加生椰完成签到 ,获得积分10
2秒前
YiYing_W发布了新的文献求助10
4秒前
zh完成签到,获得积分10
4秒前
4秒前
哈哈哈完成签到,获得积分10
5秒前
渤大彭于晏完成签到,获得积分10
5秒前
打打应助小锦章采纳,获得10
5秒前
HK发布了新的文献求助10
5秒前
dingdingding完成签到,获得积分10
5秒前
7秒前
波比大王发布了新的文献求助10
7秒前
Waterson发布了新的文献求助10
7秒前
无花果应助稳重的悟空采纳,获得10
8秒前
慕青应助ComeOn采纳,获得10
8秒前
酷波er应助动人的凤凰采纳,获得10
9秒前
SciGPT应助奔波儿灞采纳,获得10
9秒前
9秒前
Lucas应助zyc采纳,获得10
9秒前
翻翻完成签到,获得积分10
9秒前
HAO发布了新的文献求助10
10秒前
10秒前
11秒前
Hello应助新田十一郎采纳,获得10
11秒前
12秒前
火星上牛青完成签到,获得积分10
12秒前
主食圆啊发布了新的文献求助30
13秒前
爱听歌素发布了新的文献求助10
13秒前
linlin完成签到,获得积分10
14秒前
14秒前
15秒前
星辰大海应助Ohhruby采纳,获得10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814903
求助须知:如何正确求助?哪些是违规求助? 3358983
关于积分的说明 10399256
捐赠科研通 3076557
什么是DOI,文献DOI怎么找? 1689851
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608