清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Nonparametric Estimation from Incomplete Observations

非参数统计 事件(粒子物理) 统计 人口 计量经济学 数学 人口学 物理 量子力学 社会学
作者
Edward L. Kaplan,Paul Meier
标识
DOI:10.1080/01621459.1958.10501452
摘要

Abstract In lifetesting, medical follow-up, and other fields the observation of the time of occurrence of the event of interest (called a death) may be prevented for some of the items of the sample by the previous occurrence of some other event (called a loss). Losses may be either accidental or controlled, the latter resulting from a decision to terminate certain observations. In either case it is usually assumed in this paper that the lifetime (age at death) is independent of the potential loss time; in practice this assumption deserves careful scrutiny. Despite the resulting incompleteness of the data, it is desired to estimate the proportion P(t) of items in the population whose lifetimes would exceed t (in the absence of such losses), without making any assumption about the form of the function P(t). The observation for each item of a suitable initial event, marking the beginning of its lifetime, is presupposed. For random samples of size N the product-limit (PL) estimate can be defined as follows: List and label the N observed lifetimes (whether to death or loss) in order of increasing magnitude, so that one has 0≤t 1ǐ≤t 2ǐ≤ … ≤t N ǐ. Then P(t)= II. [(N – r)/(N – r + 1)], where r assumes those values for which tr ≤t and for which tr ǐ measures the time to death. This estimate is the distribution, unrestricted as to form, which maximizes the likelihood of the observations. Other estimates that are discussed are the actuarial estimates (which are also products, but with the number of factors usually reduced by grouping); and reduced-sample (RS) estimates, which require that losses not be accidental, so that the limits of observation (potential loss times) are known even for those items whose deaths are observed. When no losses occur at ages less than t, the estimate of P(t) in all cases reduces to the usual binomial estimate, namely, the observed proportion of survivors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛋妮完成签到 ,获得积分10
2秒前
wushang完成签到 ,获得积分10
7秒前
扁舟灬完成签到,获得积分10
9秒前
32秒前
metoo发布了新的文献求助10
36秒前
xrose完成签到 ,获得积分10
43秒前
Ouyang完成签到 ,获得积分10
1分钟前
阳炎完成签到,获得积分10
1分钟前
1分钟前
蒲蒲完成签到 ,获得积分10
1分钟前
2分钟前
毛毛弟完成签到 ,获得积分10
2分钟前
janejane发布了新的文献求助10
2分钟前
钟可可发布了新的文献求助10
2分钟前
科研狗完成签到 ,获得积分10
2分钟前
小马甲应助钟可可采纳,获得10
2分钟前
nano完成签到 ,获得积分10
2分钟前
mark33442完成签到,获得积分10
2分钟前
跳跃的鹏飞完成签到 ,获得积分10
2分钟前
Xccccc完成签到 ,获得积分10
2分钟前
2分钟前
freerdom完成签到 ,获得积分10
2分钟前
科研牛马完成签到,获得积分10
3分钟前
janejane完成签到 ,获得积分20
3分钟前
3分钟前
juju1234完成签到 ,获得积分10
3分钟前
jason93完成签到 ,获得积分10
4分钟前
4分钟前
jennie完成签到 ,获得积分10
4分钟前
眯眯眼的安雁完成签到 ,获得积分10
4分钟前
madison完成签到 ,获得积分10
5分钟前
wenbinvan完成签到,获得积分0
5分钟前
zzgpku完成签到,获得积分0
5分钟前
鲸鱼打滚完成签到 ,获得积分10
5分钟前
李李05完成签到,获得积分10
5分钟前
zhang完成签到 ,获得积分10
5分钟前
imica完成签到 ,获得积分10
5分钟前
allrubbish完成签到,获得积分10
5分钟前
游01完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
人工智能基础与应用 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830505
求助须知:如何正确求助?哪些是违规求助? 3372815
关于积分的说明 10475459
捐赠科研通 3092626
什么是DOI,文献DOI怎么找? 1702234
邀请新用户注册赠送积分活动 818839
科研通“疑难数据库(出版商)”最低求助积分说明 771101