Research on Greenhouse Environment Prediction Based on GCAKF-CNN-LSTM

温室 人工智能 计算机科学 环境科学 机器学习 农业工程 工程类 农学 生物
作者
Tianhong Liu,Xianzhu Qiao,Sixing Liu,Shengli Qi
出处
期刊:Applied Engineering in Agriculture [American Society of Agricultural and Biological Engineers]
卷期号:40 (2): 181-187
标识
DOI:10.13031/aea.15867
摘要

Highlights A GCAKF-CNN-LSTM model is proposed for greenhouse temperature and humidity forecasting. The grey correlation analysis is used to select the most relevant variables. Kalman filter is applied for denoising to improve the data quality. The proposed model achieves higher forecasting accuracy with the lowest forecasting errors. Abstract. Accurate prediction of temperature and humidity in the greenhouse environment is helpful to regulate the environment and promote crop growth. Aiming at the characteristics of nonlinear and strong coupling in the greenhouse environment, this article proposes a hybrid greenhouse temperature and humidity prediction model based on preprocessing algorithms, Convolution Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. Firstly, grey correlation analysis (GCA) is used to screen the data features and analyze the factors affecting the temperature and humidity in the greenhouse. Secondly, data is denoised by the Kalman filter (KF) to reduce the noise interference. Thirdly, the local connection and weight sharing features of the CNN are applied to obtain effective features from the series, and the long- and short-term dependence relationships of the data are learned by using the LSTM networks. Finally, the proposed model is validated on the greenhouse data. Experimental results demonstrated that, compared with Back Propagation(BP), Gated Recurrent Units (GRU), and LSTM, the RMSE of temperature prediction results was reduced by 31.5%, 21.6%, 14.4%, and the MAE reduced by 48.5%, 41.0%, and 32.3%, respectively. The RMSE of humidity prediction results decreased by 28.3%, 2.73%, and 0.63%, and the MAE decreased by 69.4%, 54.5%, and 10.8%, respectively. The proposed model can improve prediction accuracy and provide a decision basis for improving the timeliness of the greenhouse environmental control system. Keywords: Convolutional neural network, Greenhouse environment prediction, Kalman filter, Long short-term memory network.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
小马完成签到,获得积分10
3秒前
3秒前
慕青应助tudou0210采纳,获得10
4秒前
我是你奶完成签到,获得积分20
5秒前
Lily完成签到,获得积分10
5秒前
隐形曼青应助ZZZ采纳,获得10
5秒前
sam发布了新的文献求助10
5秒前
高大一一完成签到,获得积分10
6秒前
wanci应助summer采纳,获得10
6秒前
爱X7的嘛喽完成签到 ,获得积分10
6秒前
科研通AI5应助skier采纳,获得30
7秒前
8秒前
所所应助学术老6采纳,获得10
9秒前
Diaory2023完成签到 ,获得积分0
9秒前
mojio完成签到,获得积分10
9秒前
luoshikun发布了新的文献求助10
9秒前
9秒前
派兀派完成签到,获得积分10
10秒前
酷炫的红牛完成签到,获得积分10
10秒前
SYLH应助半岛铁皮采纳,获得10
10秒前
sq_gong发布了新的文献求助10
11秒前
阿玖完成签到 ,获得积分10
11秒前
赘婿应助HX采纳,获得10
12秒前
我不完成签到 ,获得积分10
14秒前
一一应助酷炫的红牛采纳,获得10
14秒前
52Hz发布了新的文献求助10
14秒前
15秒前
小明完成签到,获得积分10
15秒前
16秒前
ding应助Berniece采纳,获得10
16秒前
高高珩完成签到 ,获得积分10
16秒前
shisong发布了新的文献求助10
17秒前
17秒前
科研通AI5应助平常雨泽采纳,获得10
17秒前
科研宋宋完成签到,获得积分20
17秒前
打老虎完成签到,获得积分10
18秒前
SYLH应助半岛铁皮采纳,获得10
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817476
求助须知:如何正确求助?哪些是违规求助? 3360822
关于积分的说明 10409731
捐赠科研通 3078922
什么是DOI,文献DOI怎么找? 1690869
邀请新用户注册赠送积分活动 814197
科研通“疑难数据库(出版商)”最低求助积分说明 768065