Radiomic nomogram based on lumbar spine magnetic resonance images to diagnose osteoporosis

医学 列线图 磁共振成像 腰椎 骨质疏松症 放射科 核医学 腰椎 医学物理学 外科 病理 内科学
作者
S.K. Kang,Kai Wang
出处
期刊:Acta Radiologica [SAGE]
卷期号:65 (8): 950-958 被引量:3
标识
DOI:10.1177/02841851241242052
摘要

Background We aimed to establish a novel model using a radiomics analysis of magnetic resonance (MR) images for predicting osteoporosis. Purpose To investigate the effectiveness of a radiomics approach utilizing magnetic resonance imaging (MRI) of the lumbar spine in identifying osteoporosis. Material and Methods In this retrospective study, a total of 291 patients who underwent MRI were analyzed. Radiomics features were extracted from the MRI scans of all 1455 lumbar vertebrae, and build the radiomics model based on T2-weighted (T2W), T1-weighted (T1W), and T2W + T1W imaging. The performance of the combined model was assessed using metrics such as the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy. The AUCs of these models were compared using the DeLong test. Their clinical usefulness was assessed using a decision curve analysis. Results T2W, T1W, and T1W + T2W imaging retained 27, 27, and 17 non-zero coefficients, respectively. The AUCS about radiomics scores based on T2W, T1W, and T1W + T2W imaging were 0.894, 0.934, and 0.945, respectively, which all performed better than the clinical model significantly. The rad-signatures based on T1W + T2W imaging, which exhibited a stronger predictive power, were included in the creation of the nomogram for osteoporosis diagnosis, and the AUC was 0.965 (95% confidence interval (CI)=0.944–0.986) in the training cohort and 0.917 (95% CI=0.738–1.000) in the test cohort. The calibration curve indicated that the radiomics nomogram had considerable clinical usefulness in prediction, observation, and decision curve analysis. Conclusion A reliable and powerful tool for identifying osteoporosis can be provided by the nomogram that combines the T1W and T2W imaging radiomics score with clinical risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
5秒前
嘻嘻哈哈发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
Criminology34应助111采纳,获得10
9秒前
李健完成签到 ,获得积分10
11秒前
勤劳的颤完成签到 ,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
18秒前
勤奋的越彬完成签到 ,获得积分10
28秒前
yx完成签到 ,获得积分10
30秒前
31秒前
BowieHuang应助tubaba8848采纳,获得10
33秒前
量子星尘发布了新的文献求助10
37秒前
黛酾黑魑完成签到 ,获得积分10
39秒前
47秒前
斯文败类应助王颖超采纳,获得30
48秒前
量子星尘发布了新的文献求助10
53秒前
小白完成签到 ,获得积分10
55秒前
万里天完成签到 ,获得积分10
55秒前
iwsaml完成签到 ,获得积分10
56秒前
59秒前
1分钟前
王颖超发布了新的文献求助30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
三年三班三井寿完成签到,获得积分10
1分钟前
hjc641发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
apt完成签到 ,获得积分10
1分钟前
1分钟前
Alicia完成签到 ,获得积分10
1分钟前
情怀应助嘻嘻哈哈采纳,获得10
1分钟前
仙女完成签到 ,获得积分10
1分钟前
1分钟前
皮皮发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
机智的孤兰完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773288
求助须知:如何正确求助?哪些是违规求助? 5609323
关于积分的说明 15430767
捐赠科研通 4905836
什么是DOI,文献DOI怎么找? 2639845
邀请新用户注册赠送积分活动 1587745
关于科研通互助平台的介绍 1542740