DMs-MAFM+EfficientNet: a hybrid model for predicting dysthyroid optic neuropathy

特征(语言学) 人工智能 卷积神经网络 计算机科学 特征提取 模式识别(心理学) 频道(广播) 深度学习 人工神经网络 计算机网络 语言学 哲学
作者
Cong Wu,Shijun Li,Xiao Liu,Fagang Jiang,Bingjie Shi
出处
期刊:Medical & Biological Engineering & Computing [Springer Science+Business Media]
卷期号:60 (11): 3217-3230 被引量:12
标识
DOI:10.1007/s11517-022-02663-4
摘要

Thyroid-associated ophthalmopathy (TAO) is a very common autoimmune orbital disease. Approximately 4%-8% of TAO patients will deteriorate and develop the most severe dysthyroid optic neuropathy (DON). According to the current data provided by clinical experts, there is still a certain proportion of suspected DON patients who cannot be diagnosed, and the clinical evaluation has low sensitivity and specificity. There is an urgent need for an efficient and accurate method to assist physicians in identifying DON. This study proposes a hybrid deep learning model to accurately identify suspected DON patients using computed tomography (CT). The hybrid model is mainly composed of the double multiscale and multi attention fusion module (DMs-MAFM) and a deep convolutional neural network. The DMs-MAFM is the feature extraction module proposed in this study, and it contains a multiscale feature fusion algorithm and improved channel attention and spatial attention, which can capture the features of tiny objects in the images. Multiscale feature fusion is combined with an attention mechanism to form a multilevel feature extraction module. The multiscale fusion algorithm can aggregate different receptive field features, and then fully obtain the channel and spatial correlation of the feature map through the multiscale channel attention aggregation module and spatial attention module, respectively. According to the experimental results, the hybrid model proposed in this study can accurately identify suspected DON patients, with Accuracy reaching 96%, Specificity reaching 99.5%, Sensitivity reaching 94%, Precision reaching 98.9% and F1-score reaching 96.4%. According to the evaluation by experts, the hybrid model proposed in this study has some enlightening significance for the diagnosis and prediction of clinically suspect DON.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐尔阳完成签到 ,获得积分10
1秒前
jjjjchou完成签到,获得积分10
2秒前
rich发布了新的文献求助10
2秒前
2秒前
红炉点血完成签到,获得积分10
2秒前
evvj完成签到,获得积分10
3秒前
3秒前
FCL完成签到,获得积分10
3秒前
小苹果完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
未寄出的信笺积满灰尘完成签到 ,获得积分10
5秒前
想飞的猪发布了新的文献求助10
5秒前
饱满翠绿完成签到,获得积分20
6秒前
霸气的断缘完成签到,获得积分10
7秒前
独特乘风完成签到,获得积分10
8秒前
巨大的小侠完成签到,获得积分10
8秒前
乔木木完成签到,获得积分10
8秒前
我爱读文献完成签到,获得积分10
8秒前
崩溃发布了新的文献求助10
8秒前
9秒前
zhl发布了新的文献求助10
10秒前
gxpjzbg完成签到,获得积分10
10秒前
10秒前
10秒前
02完成签到,获得积分10
11秒前
11秒前
Dreamhappy完成签到,获得积分10
11秒前
111发布了新的文献求助10
12秒前
502s完成签到,获得积分10
12秒前
复杂的凝冬完成签到,获得积分10
13秒前
11号迪西馅饼完成签到,获得积分10
13秒前
阳光的易真完成签到,获得积分10
14秒前
Billy应助奔跑的兔子采纳,获得30
14秒前
geold完成签到,获得积分10
15秒前
gotolian完成签到,获得积分10
15秒前
15秒前
顾闭月完成签到,获得积分10
15秒前
科研通AI2S应助Yongander采纳,获得10
16秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3904060
求助须知:如何正确求助?哪些是违规求助? 3448940
关于积分的说明 10855012
捐赠科研通 3174349
什么是DOI,文献DOI怎么找? 1753782
邀请新用户注册赠送积分活动 847973
科研通“疑难数据库(出版商)”最低求助积分说明 790628