亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Memory, evolutionary operator, and local search based improved Grey Wolf Optimizer with linear population size reduction technique

水准点(测量) 差异进化 计算机科学 数学优化 粒子群优化 布谷鸟搜索 进化算法 人口 元启发式 早熟收敛 最优化问题 局部搜索(优化) 还原(数学) 算法 数学 社会学 人口学 大地测量学 地理 几何学
作者
Rasel Ahmed,Gade Pandu Rangaiah,Shuhaimi Mahadzir,Seyedali Mirjalili,Mohamed H. Hassan,Salah Kamel
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:264: 110297-110297 被引量:52
标识
DOI:10.1016/j.knosys.2023.110297
摘要

Optimization of multi-modal functions is challenging even for evolutionary and swarm-based algorithms as it requires an efficient exploration for finding the promising region of the search space, and effective exploitation to precisely find the global optimum. Grey Wolf Optimizer (GWO) is a recently developed metaheuristic algorithm that is inspired by nature with a relatively small number of parameters for tuning. However, GWO and most of its variants may suffer from the lack of population diversity, premature convergence, and the inability to preserve a good balance between exploratory and exploitative behaviors. To address these limitations, this work proposes a new variant of GWO incorporating memory, evolutionary operators, and a stochastic local search technique. It further integrates Linear Population Size Reduction (LPSR) technique. The proposed algorithm is comprehensively tested on 23 numerical benchmark functions, high dimensional benchmark functions, 13 engineering case studies, four data classifications, and three function approximation problems. The benchmark functions are mostly taken from the CEC 2005 and CEC 2010 special sessions, and they include rotated, shifted functions. The engineering case studies are from the CEC 2020 real-world non-convex constrained optimization problems. The performance of the proposed GWO is compared with popular metaheuristics, namely, particle swarm optimization (PSO), gravitational search algorithm (GSA), slap swarm algorithm (SSA), differential evolution (DE), self-adaptive differential evolution (SADE), basic GWO and its three recently improved variants. Statistical analysis and Friedman tests have been conducted to thoroughly compare their performance. The obtained results demonstrate that the proposed GWO outperforms the algorithms compared for the benchmark functions and engineering case studies tested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Runjin_Hu发布了新的文献求助10
刚刚
大学生完成签到 ,获得积分10
3秒前
5秒前
斯文败类应助minomous采纳,获得30
10秒前
田様应助Runjin_Hu采纳,获得10
13秒前
17秒前
小碗完成签到 ,获得积分10
20秒前
minomous发布了新的文献求助30
22秒前
学不完了完成签到 ,获得积分10
22秒前
小马甲应助dungeon采纳,获得10
23秒前
大碗完成签到 ,获得积分10
24秒前
Akim应助song采纳,获得10
26秒前
28秒前
邱壮子完成签到 ,获得积分10
31秒前
32秒前
34秒前
渴望者发布了新的文献求助50
34秒前
36秒前
dungeon发布了新的文献求助10
39秒前
song发布了新的文献求助10
39秒前
lixuebin完成签到 ,获得积分10
49秒前
科研通AI6应助jitianxing采纳,获得10
51秒前
53秒前
酥脆小鱼完成签到 ,获得积分10
55秒前
环走鱼尾纹完成签到 ,获得积分10
1分钟前
1分钟前
汉堡包应助彪壮的拓芙采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
研友_VZG7GZ应助张文采纳,获得10
1分钟前
linyingo发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
linyingo完成签到,获得积分10
1分钟前
1分钟前
JoeyJin发布了新的文献求助10
1分钟前
badabadaba完成签到,获得积分10
1分钟前
小马甲应助decade采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610804
求助须知:如何正确求助?哪些是违规求助? 4016589
关于积分的说明 12435475
捐赠科研通 3698269
什么是DOI,文献DOI怎么找? 2039335
邀请新用户注册赠送积分活动 1072208
科研通“疑难数据库(出版商)”最低求助积分说明 955869