Measuring Physical Disorder in Urban Street Spaces: A Large-Scale Analysis Using Street View Images and Deep Learning

比例(比率) 建筑环境 心理干预 地理 心理学 地图学 精神科 土木工程 工程类
作者
Jingjia Chen,Long Chen,Yan Li,Wenjia Zhang,Ying Long
出处
期刊:Annals of the American Association of Geographers [Taylor & Francis]
卷期号:113 (2): 469-487 被引量:28
标识
DOI:10.1080/24694452.2022.2114417
摘要

Physical disorder is associated with negative outcomes in economic performance, public health, and social stability, such as the depreciation of property, mental stress, fear, and crime. A limited but growing body of literature considers physical disorder in urban space, especially the topic of identifying physical disorder at a fine scale. There is currently no effective and replicable way of measuring physical disorder at a fine scale for a large area with low cost, however. To fill the gap, this article proposes an approach that takes advantage of the massive volume of street view images as input data for virtual audits and uses a deep learning model to quantitatively measure the physical disorder of urban street spaces. The results of implementing this approach with more than 700,000 streets in Chinese cities—which, to our knowledge, is the first attempt globally to quantify the physical disorder in such large urban areas—validate the effectiveness and efficiency of the approach. Through this large-scale empirical analysis in China, this article makes several theoretical contributions. First, we expand the factors of physical disorder, which were previously neglected in U.S. studies. Second, we find that urban physical disorder presents three typical spatial distributions—scattered, diffused, and linear concentrated patterns—which provide references for revealing the development trends of physical disorder and making spatial interventions. Finally, our regression analysis between physical disorder and street characteristics identified the factors that could affect physical disorder and thus enriched the theoretical underpinnings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助yoga敏采纳,获得10
刚刚
eric完成签到,获得积分10
刚刚
刚刚
彭于晏应助zhang采纳,获得10
1秒前
科研通AI5应助泡沫采纳,获得10
1秒前
科研顺利完成签到,获得积分10
1秒前
科研通AI5应助lune采纳,获得10
2秒前
华仔应助王文茹采纳,获得10
2秒前
善学以致用应助蛋花花花采纳,获得10
3秒前
元羞花完成签到,获得积分10
3秒前
4秒前
科研助手6应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
善学以致用应助静越采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
YH应助科研通管家采纳,获得100
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
冰魂应助科研通管家采纳,获得20
4秒前
田様应助科研通管家采纳,获得10
5秒前
帅子发布了新的文献求助10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
干雅柏发布了新的文献求助10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
sonicgoboy完成签到,获得积分10
5秒前
cmt发布了新的文献求助10
6秒前
6秒前
zzzz完成签到,获得积分10
6秒前
能量球发布了新的文献求助10
8秒前
明8发布了新的文献求助10
8秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793584
求助须知:如何正确求助?哪些是违规求助? 3338530
关于积分的说明 10290111
捐赠科研通 3054952
什么是DOI,文献DOI怎么找? 1676226
邀请新用户注册赠送积分活动 804261
科研通“疑难数据库(出版商)”最低求助积分说明 761816