闪烁体
材料科学
分辨率(逻辑)
能量转移
能量(信号处理)
分析化学(期刊)
放射化学
核物理学
原子物理学
光学
探测器
物理
化学
量子力学
色谱法
人工智能
计算机科学
作者
Zhikun Guo,Shaoan Zhang,Chao He,Jialong Xu,Zhishan Chen,Yiqing Chen,Shengzhi Sun,Ling Gao,Chenjie Gu,Yang Li
出处
期刊:Small
[Wiley]
日期:2025-08-15
卷期号:21 (39)
标识
DOI:10.1002/smll.202506573
摘要
Abstract A primary challenge in inorganic scintillators development is maximizing the X‐ray energy conversion efficiency. Conventional low‐doping strategies in rare‐earth systems mitigate concentration quenching but result in inefficient host‐to‐activator energy transfer, leading to significant energy losses. To overcome this, a novel rare‐earth matrix design is proposed: using Tb 3+ ions as the host lattice and incorporating energy‐matched Eu 3+ ions as activators. This design enabled highly efficient energy transfer from the host to the luminescent centers. Experiments confirmed that quasi‐1D Tb 3+ chains (intra‐chain distance: 3.92 Å, inter‐chain distance: 5.92 Å) enabled Dexter‐type energy transfer (Tb 3+ : 5 D 4 → Eu 3+ : 5 D 1 / 5 D 2 ), achieving near‐unity energy transfer efficiency. The optimized Tb 1.8 W 3 O 12 :0.2Eu 3+ @PMMA film exhibited an X‐ray light yield of 25 000 photons·MeV −1 at 22 keV, a spatial resolution of 14 lp mm −1 , and an ultra‐low detection limit (14.1 nGy air s −1 ). High‐resolution radiography of biological specimens validated imaging capability at the 0.1 mm scale. This work established a paradigm for designing high‐sensitivity scintillators through quasi‐1D energy transfer, advancing low‐dose X‐ray imaging applications in medical diagnostics and industrial inspection.
科研通智能强力驱动
Strongly Powered by AbleSci AI