Inferring velocity and pressure fields from particle images via physics-informed neural networks

作者
Liu Hai-long,Zhi Wang,Rui Deng,Shipeng Wang,Chao Xu,Shengze Cai
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (9)
标识
DOI:10.1063/5.0290283
摘要

Particle image velocimetry (PIV) technology is widely used in scientific research and engineering applications, serving as a crucial experimental tool in fluid mechanics. Recently, physics-informed neural networks (PINNs) have been introduced to reconstruct PIV flow fields by integrating measurement data with governing equations during network training. However, existing PINN approaches primarily focus on post-processing PIV data and face challenges in balancing accuracy and computational efficiency. In this work, we simultaneously encode the optical flow equation and the Navier–Stokes equations into the loss function of a neural network. By applying differential operators to discretize grayscale gradients at the pixel level, we constrain the optical flow equation and develop a hybrid physics-informed neural network (OF-PINN) jointly governed by both equations. OF-PINN directly infers velocity and pressure fields from particle images, enabling an unsupervised PIV approach that effectively reconstructs high-quality pressure fields. For diffusion-dominated flows, we incorporate diffusion and smoothness constraint terms into the residuals of the governing equations to enhance OF-PINN performance. Comparative experiments on cylinder flow, turbulence, and hydrofoil PIV cases demonstrate that OF-PINN outperforms conventional cross correlation and Horn–Schunck methods in terms of accuracy and robustness. OF-PINN offers a novel and efficient solution for visualizing complex flow phenomena.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
日安完成签到 ,获得积分10
1秒前
学道发布了新的文献求助10
1秒前
啦啦啦完成签到,获得积分10
1秒前
墨懿完成签到,获得积分10
2秒前
邱士萧完成签到,获得积分10
2秒前
3秒前
在水一方应助ruby采纳,获得10
3秒前
Zhang_Jt107完成签到 ,获得积分10
3秒前
丘比特应助you一采纳,获得10
4秒前
iNk应助潘善若采纳,获得10
4秒前
whatever发布了新的文献求助200
4秒前
zdesfsfa发布了新的文献求助30
4秒前
Owen应助闻屿采纳,获得10
4秒前
xiaxia完成签到 ,获得积分10
4秒前
5秒前
light发布了新的文献求助10
5秒前
汉堡包应助可靠的雪青采纳,获得10
5秒前
科研通AI2S应助生动的秋荷采纳,获得10
6秒前
狗蛋完成签到 ,获得积分10
6秒前
丁响发布了新的文献求助10
6秒前
Lucas应助猪伱平安采纳,获得10
7秒前
kk完成签到,获得积分10
7秒前
冶金人完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
水菜泽子发布了新的文献求助10
9秒前
MikuMiya发布了新的文献求助30
9秒前
领导范儿应助天天玩采纳,获得10
9秒前
10秒前
10秒前
黑球发布了新的文献求助10
10秒前
tyzhet完成签到,获得积分10
11秒前
11秒前
Hello应助术后采纳,获得10
11秒前
大模型应助River采纳,获得10
12秒前
脑洞疼应助red采纳,获得10
12秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340179
求助须知:如何正确求助?哪些是违规求助? 4476788
关于积分的说明 13932742
捐赠科研通 4372525
什么是DOI,文献DOI怎么找? 2402437
邀请新用户注册赠送积分活动 1395299
关于科研通互助平台的介绍 1367376