Metal–Organic Framework‐Based Heterojunction Materials for Photocatalytic CO2 Reduction Reaction

光催化 异质结 还原(数学) 金属有机骨架 材料科学 金属 化学工程 环境科学 环境化学 化学 催化作用 冶金 光电子学 吸附 工程类 有机化学 几何学 数学
作者
Jingyi Zhang,Xia Li,Dingyuan Deng,Xingang Jia,Dengmeng Song,Li Wang,Yanlong Chang,Xinrui Xie,Liangbin Dou,Wen‐Zhen Wang
出处
期刊:Solar RRL [Wiley]
卷期号:9 (17) 被引量:1
标识
DOI:10.1002/solr.202500424
摘要

The escalating reliance on fossil fuels has exacerbated anthropogenic CO 2 emissions, driving global climate change and necessitating urgent strategies for carbon mitigation. Among emerging solutions, photocatalytic CO 2 reduction (CO 2 RR) offers a dual benefit by converting CO 2 into value‐added chemicals and renewable fuels using solar energy. However, the inherent thermodynamic stability of CO 2 , particularly the high bond dissociation energy of the CO bond (805 kJ mol −1 ), poses a significant challenge to efficient activation and selective conversion. Recent advances highlight metal–organic frameworks (MOFs) as promising photocatalysts due to their tunable structures, high surface areas, and semiconductor‐like properties, which enable precise modulation of band structures, charge transport pathways, and active site distribution. Despite their potential, MOF‐based systems face limitations such as restricted light absorption and rapid charge recombination. To address these challenges, the integration of MOFs with complementary materials to form heterojunctions has emerged as a key strategy, enhancing charge separation and catalytic selectivity. This review systematically examines recent progress in MOF‐based heterojunction photocatalysts, focusing on structural design principles, mechanistic insights, and performance optimization. By analyzing structure–activity relationships and advanced regulation strategies, we highlight innovative approaches to improve efficiency, selectivity, and stability. Furthermore, we identify critical challenges, including scalability and long‐term durability, and propose future directions to inform the optimization of novel photocatalytic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Wangle发布了新的文献求助30
1秒前
寒冬完成签到,获得积分10
2秒前
青萝发布了新的文献求助10
3秒前
鱼鱼鱼完成签到,获得积分10
3秒前
科研通AI6应助Dsk5采纳,获得10
3秒前
充电宝应助mhb采纳,获得10
4秒前
从梦发布了新的文献求助10
5秒前
6秒前
sss发布了新的文献求助10
7秒前
鱼鱼余裕完成签到,获得积分10
8秒前
9秒前
LQ应助LucyLi采纳,获得10
10秒前
10秒前
善学以致用应助doranlou采纳,获得10
11秒前
周健完成签到,获得积分10
12秒前
13秒前
今后应助雪山飞龙采纳,获得10
13秒前
14秒前
梅子酒发布了新的文献求助10
15秒前
FashionBoy应助YLX采纳,获得10
15秒前
多吃蔬菜应助阿发采纳,获得10
16秒前
章鱼发布了新的文献求助10
16秒前
认真的方盒完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
Marcus完成签到,获得积分10
20秒前
Lucas应助GGB采纳,获得10
20秒前
一步一步完成签到,获得积分10
21秒前
Propitious完成签到 ,获得积分10
21秒前
22秒前
23秒前
库库写论文完成签到,获得积分10
25秒前
酷波er应助chen采纳,获得10
26秒前
喵喵完成签到,获得积分10
26秒前
27秒前
27秒前
LXL发布了新的文献求助10
27秒前
27秒前
YLX发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480459
求助须知:如何正确求助?哪些是违规求助? 4581574
关于积分的说明 14381235
捐赠科研通 4510152
什么是DOI,文献DOI怎么找? 2471660
邀请新用户注册赠送积分活动 1458083
关于科研通互助平台的介绍 1431812