已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Core Symptoms and Dynamic Interactions of Depressive Symptoms in Older Chinese Adults: A Longitudinal Network Analysis

纵向研究 社会心理的 萧条(经济学) 横断面研究 心理学 临床心理学 医学 精神科 老年学 病理 经济 宏观经济学
作者
Yue Feng,Li Chen,Qi Yuan,Lin Ma,Zhao Wen,Lu Bai,Jing Chen
出处
期刊:Depression and Anxiety [Wiley]
卷期号:2025 (1)
标识
DOI:10.1155/da/8078557
摘要

Background: Depressive symptoms in older adults are associated with adverse psychosocial outcomes. Understanding how depressive symptoms interrelate can enhance intervention strategies. While network analysis has advanced our comprehension of depressive symptom structure, few studies have explored dynamic interactions in older populations. This study examined both cross‐sectional and longitudinal networks of depressive symptoms in older adults to identify core symptoms and symptom interactions over time. Methods: Participants aged 60 and older with complete two‐wave data (baseline: 2018; follow‐up: 2020) from the China Health and Retirement Longitudinal Study (CHARLS) were included ( N = 6621). Depressive symptoms were assessed using the 10‐item Center for Epidemiologic Studies Depression Scale (CESD‐10), administered face‐to‐face by trained interviewers. Cross‐sectional networks were estimated using the Ising model for each time point, and a cross‐lagged panel network (CLPN) model was applied to examine longitudinal symptom interactions over time. Network accuracy and stability were assessed through bootstrap procedures. Results: Participants had a mean age of 67.34 years, 52% male, and 93.7% Han ethnicity. “Felt depressed” ( r s = 1.244 at Wave 1, r s = 1.251 at Wave 2) demonstrated the highest strength centrality in both cross‐sectional networks. Node strength exhibited strong stability (correlation stability [CS]‐coefficient = 0.75 for both waves). The presence of edges ( φ = 0.802; p < 0.001) and edge weights ( ρ = 0.921, p < 0.001) across two cross‐sectional networks showed high reproducibility. In the longitudinal network, “lack of happiness” showed the highest out‐expected influence (out‐EI; r = 1.404), followed by “felt depressed” ( r = 0.994). Both in‐expected influence (in‐EI) and out‐EI showed acceptable stability (CS‐coefficient = 0.594). Conclusions: Targeting core symptoms, such as “felt depressed” and “lack of happiness” may disrupt depressive symptom networks and reduce overall depression severity, informing precision interventions in older adults. Clinicians could prioritize these symptoms in screening and treatment. Future research should explore whether symptom‐targeted interventions can reshape network structures over time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
nono发布了新的文献求助10
2秒前
5秒前
abab完成签到 ,获得积分10
6秒前
WILD完成签到 ,获得积分10
6秒前
GingerF应助阳地黄采纳,获得200
6秒前
维奈克拉应助gndd采纳,获得10
6秒前
orixero应助roetfff采纳,获得10
7秒前
9秒前
Bill Wang发布了新的文献求助10
9秒前
athena完成签到 ,获得积分10
9秒前
10秒前
12秒前
HTniconico完成签到 ,获得积分10
12秒前
12秒前
七七发布了新的文献求助10
13秒前
Lorain完成签到,获得积分10
14秒前
17秒前
欣喜觅山完成签到 ,获得积分10
17秒前
zkx发布了新的文献求助20
17秒前
赘婿应助合适夜柳采纳,获得10
19秒前
eu发布了新的文献求助10
20秒前
黛薇完成签到,获得积分10
22秒前
flower关注了科研通微信公众号
22秒前
花生完成签到 ,获得积分10
23秒前
无限的猫猫关注了科研通微信公众号
24秒前
典雅的俊驰应助jiao采纳,获得10
24秒前
26秒前
搜集达人应助七七采纳,获得10
26秒前
Evan完成签到 ,获得积分10
29秒前
西予完成签到,获得积分10
31秒前
31秒前
Fairy发布了新的文献求助10
32秒前
34秒前
Robin完成签到,获得积分10
36秒前
36秒前
37秒前
38秒前
39秒前
l900发布了新的文献求助20
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493188
求助须知:如何正确求助?哪些是违规求助? 4591220
关于积分的说明 14433506
捐赠科研通 4523842
什么是DOI,文献DOI怎么找? 2478488
邀请新用户注册赠送积分活动 1463484
关于科研通互助平台的介绍 1436266