WS-LungNet: A two-stage weakly-supervised lung cancer detection and diagnosis network

人工智能 计算机科学 结核(地质) 恶性肿瘤 计算机辅助诊断 深度学习 分割 机器学习 肺癌 灵活性(工程) 计算机辅助设计 医学 放射科 模式识别(心理学) 病理 数学 古生物学 统计 工程制图 工程类 生物
作者
Zhiqiang Shen,Peng Cao,Jinzhu Yang,Osmar R. Zaı̈ane
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:154: 106587-106587 被引量:20
标识
DOI:10.1016/j.compbiomed.2023.106587
摘要

Computer-aided lung cancer diagnosis (CAD) system on computed tomography (CT) helps radiologists guide preoperative planning and prognosis assessment. The flexibility and scalability of deep learning methods are limited in lung CAD. In essence, two significant challenges to be solved are (1) Label scarcity due to cost annotations of CT images by experienced domain experts, and (2) Label inconsistency between the observed nodule malignancy and the patients' pathology evaluation. These two issues can be considered weak label problems. We address these issues in this paper by introducing a weakly-supervised lung cancer detection and diagnosis network (WS-LungNet), consisting of a semi-supervised computer-aided detection (Semi-CADe) that can segment 3D pulmonary nodules based on unlabeled data through adversarial learning to reduce label scarcity, as well as a cross-nodule attention computer-aided diagnosis (CNA-CADx) for evaluating malignancy at the patient level by modeling correlations between nodules via cross-attention mechanisms and thereby eliminating label inconsistency. Through extensive evaluations on the LIDC-IDRI public database, we show that our proposed method achieves 82.99% competition performance metric (CPM) on pulmonary nodule detection and 88.63% area under the curve (AUC) on lung cancer diagnosis. Extensive experiments demonstrate the advantage of WS-LungNet on nodule detection and malignancy evaluation tasks. Our promising results demonstrate the benefits and flexibility of the semi-supervised segmentation with adversarial learning and the nodule instance correlation learning with the attention mechanism. The results also suggest that making use of the unlabeled data and taking the relationship among nodules in a case into account are essential for lung cancer detection and diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ljc发布了新的文献求助10
刚刚
小林发布了新的文献求助10
刚刚
CCC发布了新的文献求助10
1秒前
浮云完成签到,获得积分10
2秒前
多多发SCI完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
传奇3应助LINHAI采纳,获得10
4秒前
雨下着的坡道完成签到,获得积分10
4秒前
liuz53完成签到,获得积分20
5秒前
FashionBoy应助林平之采纳,获得10
5秒前
章鱼1018完成签到 ,获得积分10
6秒前
乔烨磊完成签到,获得积分10
6秒前
6秒前
cg7发布了新的文献求助10
7秒前
大成子发布了新的文献求助10
7秒前
zmy发布了新的文献求助10
8秒前
1111完成签到 ,获得积分10
8秒前
xiaxia完成签到,获得积分20
9秒前
木子完成签到,获得积分20
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
小蘑菇应助fanfan采纳,获得10
11秒前
玄辰应助yingwanzi采纳,获得30
11秒前
13秒前
sure发布了新的文献求助10
13秒前
14秒前
苹果发布了新的文献求助10
14秒前
少年旭完成签到,获得积分10
14秒前
木木完成签到,获得积分10
14秒前
14秒前
云ch发布了新的文献求助20
15秒前
Llll发布了新的文献求助10
15秒前
16秒前
17秒前
yjm发布了新的文献求助30
18秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831915
求助须知:如何正确求助?哪些是违规求助? 3374157
关于积分的说明 10483719
捐赠科研通 3094060
什么是DOI,文献DOI怎么找? 1703290
邀请新用户注册赠送积分活动 819345
科研通“疑难数据库(出版商)”最低求助积分说明 771451