A deep learning framework for

数学教育 人工智能 心理学 计算机科学
作者
Peijing Zhang,Xueyi Wang,Xufeng Cen,Qi Zhang,Yuting Fu,Yuqing Mei,Xinru Wang,Renying Wang,Jingjing Wang,Hongwei Ouyang,Tingbo Liang,Hongguang Xia,Xiaoping Han,Guoji Guo
出处
期刊:PubMed 卷期号:12 (2): nwae451-nwae451 被引量:6
标识
DOI:10.1093/nsr/nwae451
摘要

Tumor heterogeneity plays a pivotal role in tumor progression and resistance to clinical treatment. Single-cell RNA sequencing (scRNA-seq) enables us to explore heterogeneity within a cell population and identify rare cell types, thereby improving our design of targeted therapeutic strategies. Here, we use a pan-cancer and pan-tissue single-cell transcriptional landscape to reveal heterogeneous expression patterns within malignant cells, precancerous cells, as well as cancer-associated stromal and endothelial cells. We introduce a deep learning framework named Shennong for in silico screening of anticancer drugs for targeting each of the landscape cell clusters. Utilizing Shennong, we could predict individual cell responses to pharmacologic compounds, evaluate drug candidates' tissue damaging effects, and investigate their corresponding action mechanisms. Prioritized compounds in Shennong's prediction results include FDA-approved drugs currently undergoing clinical trials for new indications, as well as drug candidates reporting anti-tumor activity. Furthermore, the tissue damaging effect prediction aligns with documented injuries and terminated discovery events. This robust and explainable framework has the potential to accelerate the drug discovery process and enhance the accuracy and efficiency of drug screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
火儿完成签到,获得积分10
1秒前
1秒前
情怀应助wenjian采纳,获得10
2秒前
你的风筝应助khaihay采纳,获得10
2秒前
浮游应助王123采纳,获得10
3秒前
3秒前
cinnamonbrd完成签到,获得积分10
3秒前
科研通AI6应助芋圆采纳,获得10
3秒前
刘成完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助50
6秒前
6秒前
6秒前
曹先生发布了新的文献求助20
6秒前
7秒前
7秒前
rslysywd发布了新的文献求助30
7秒前
呵呵呵呵发布了新的文献求助10
8秒前
lxc发布了新的文献求助10
8秒前
贤惠的伟泽完成签到,获得积分10
9秒前
9秒前
赘婿应助Zxxz采纳,获得10
9秒前
CipherSage应助lishanshan采纳,获得10
10秒前
顾矜应助hao采纳,获得10
10秒前
Atlas完成签到,获得积分20
11秒前
打打应助阳宝是个小蜜蜂采纳,获得10
11秒前
脑洞疼应助liumou采纳,获得10
11秒前
研友_VZG7GZ应助Billy采纳,获得20
11秒前
12秒前
ilooksjw发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
周先生发布了新的文献求助10
13秒前
13秒前
lbl234发布了新的文献求助10
13秒前
14秒前
Dawn完成签到,获得积分10
14秒前
heher完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5012268
求助须知:如何正确求助?哪些是违规求助? 4253594
关于积分的说明 13254851
捐赠科研通 4056369
什么是DOI,文献DOI怎么找? 2218666
邀请新用户注册赠送积分活动 1228332
关于科研通互助平台的介绍 1150778