Electrochemical Synthesis of Metasequoia‐Like Reduced Graphene Oxide Coated Cobalt‐Silver Catalyst for Stable and Efficient Electrocatalytic Nitrate Reduction to Ammonia

催化作用 石墨烯 无机化学 电催化剂 氧化物 电化学 材料科学 氧化钴 化学 化学工程 纳米技术 电极 冶金 有机化学 工程类 物理化学
作者
Zhengyang Liu,Xiaohan Huang,Xing Liu,Jie Liu,Mengting Wang,Tao Ding,Linghui Yan,Zehui Zhang,Guosheng Shi
出处
期刊:Small [Wiley]
标识
DOI:10.1002/smll.202408566
摘要

Abstract Electrocatalytic nitrate (NO 3 − ) reduction to ammonia (NH 3 ) is a green and efficient NH 3 synthesis technology. Metallic silver (Ag) is one of the well‐known electrocatalysts for NO 3 − reduction. However, under alkaline conditions, its poor water‐splitting ability fails to provide sufficient protonic hydrogen required for NH 3 synthesis, resulting in low NH 3 selectivity. Additionally, metal catalysts are prone to leaching and oxidation during electrocatalysis, resulting in poor stability. Herein, cobalt (Co) into Ag (CoAg) catalyst is doped, which not only increases the NH 3 selectivity by 34.4%, but also reduces the reduction potential by 0.1 V. Meanwhile, reduced graphene oxide (rGO) as a protective “armor” is used to encapsulate the CoAg catalyst (rGO 2.92 @CoAg). The rGO 2.92 @CoAg catalyst shows excellent stability for over 300 hours (h) of continuous reaction. The Co and Ag contents in the rGO 2.92 @CoAg catalyst after continuous tests decreases by only 4.3% and 3.1%, respectively, which are much lower than those of the CoAg catalyst without the rGO (90.8%, 52.6%). Moreover, the rGO 2.92 @CoAg catalyst shows high Faradaic efficiency (99.3%) and NH 3 yield rate (1.47 mmol h −1 cm −2 ). Therefore, a high performance and strong stability rGO 2.92 @CoAg catalyst is obtained by Co doping and rGO coating, which provides theoretical basis for practical industrial application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luoqin发布了新的文献求助10
1秒前
1秒前
hbc完成签到,获得积分10
2秒前
2秒前
Fu发布了新的文献求助10
2秒前
3秒前
3秒前
kingwill举报Keith求助涉嫌违规
3秒前
fzzf发布了新的文献求助10
3秒前
NexusExplorer应助无所谓的啦采纳,获得10
3秒前
爆米花应助无所谓的啦采纳,获得10
3秒前
3秒前
桐桐应助无所谓的啦采纳,获得10
3秒前
科研通AI5应助无所谓的啦采纳,获得10
3秒前
Akim应助无所谓的啦采纳,获得10
3秒前
科目三应助无所谓的啦采纳,获得10
3秒前
zjs226688发布了新的文献求助10
3秒前
xiaoyuan发布了新的文献求助20
4秒前
蓝胖子完成签到,获得积分10
5秒前
追寻的送终完成签到,获得积分10
5秒前
hjyylab应助无情书琴采纳,获得10
5秒前
科研通AI5应助xiixix采纳,获得10
5秒前
5秒前
T_MC郭发布了新的文献求助10
5秒前
5秒前
科研通AI5应助孤岛采纳,获得10
6秒前
小科发布了新的文献求助10
6秒前
以行践言发布了新的文献求助10
6秒前
科研通AI5应助酷酷的紫南采纳,获得30
6秒前
冰魂应助卓卓采纳,获得10
6秒前
6秒前
7秒前
龙如意发布了新的文献求助10
7秒前
qqq发布了新的文献求助10
7秒前
8秒前
JYM发布了新的文献求助10
8秒前
浩浩浩发布了新的文献求助10
8秒前
碧蓝筝完成签到,获得积分10
9秒前
10秒前
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839094
求助须知:如何正确求助?哪些是违规求助? 3381478
关于积分的说明 10518394
捐赠科研通 3100886
什么是DOI,文献DOI怎么找? 1707833
邀请新用户注册赠送积分活动 821944
科研通“疑难数据库(出版商)”最低求助积分说明 773056