Neurobiological fingerprints of negative symptoms in schizophrenia identified by connectome‐based modeling

连接体 精神分裂症(面向对象编程) 心理学 神经科学 精神科 功能连接
作者
Ziyang Gao,Yuan Xiao,Fei Zhu,Tao Bo,Qiannan Zhao,Wei Yu,Jeffrey R. Bishop,Qiyong Gong,Su Lui
出处
期刊:Psychiatry and Clinical Neurosciences [Wiley]
标识
DOI:10.1111/pcn.13782
摘要

Aim As a central component of schizophrenia psychopathology, negative symptoms result in detrimental effects on long‐term functional prognosis. However, the neurobiological mechanism underlying negative symptoms remains poorly understood, which limits the development of novel treatment interventions. This study aimed to identify the specific neural fingerprints of negative symptoms in schizophrenia. Methods Based on resting‐state functional connectivity data obtained in a large sample ( n = 132) of first‐episode drug‐naïve schizophrenia patients (DN‐FES), connectome‐based predictive modeling (CPM) with cross‐validation was applied to identify functional networks that predict the severity of negative symptoms. The generalizability of identified networks was then validated in an independent sample of n = 40 DN‐FES. Results A connectivity pattern significantly driving the prediction of negative symptoms ( ρ = 0.28, MSE = 81.04, P = 0.012) was identified within and between networks implicated in motivation (medial frontal, subcortical, sensorimotor), cognition (default mode, frontoparietal, medial frontal) and error processing (medial frontal and cerebellum). The identified networks also predicted negative symptoms in the independent validation sample ( ρ = 0.37, P = 0.018). Importantly, the predictive model was symptom‐specific and robust considering the potential effects of demographic characteristics and validation strategies. Conclusions Our study discovers and validates a comprehensive network model as the unique neural substrates of negative symptoms in schizophrenia, which provides a novel and comprehensive perspective to the development of target treatment strategies for negative symptoms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文静竹发布了新的文献求助10
刚刚
清梦发布了新的文献求助10
1秒前
顺利毕业完成签到,获得积分10
2秒前
桐桐应助NOSIN采纳,获得30
2秒前
drZZY发布了新的文献求助30
2秒前
3秒前
shi完成签到,获得积分10
3秒前
奥特曼打怪兽关注了科研通微信公众号
3秒前
共享精神应助Hupoo采纳,获得10
4秒前
4秒前
4秒前
4秒前
CK完成签到,获得积分10
5秒前
6秒前
6秒前
小李完成签到,获得积分10
6秒前
7秒前
徐青青完成签到,获得积分10
7秒前
8秒前
斯文败类应助babyshark采纳,获得10
8秒前
慕青应助jase采纳,获得10
8秒前
西直门三太子完成签到 ,获得积分10
8秒前
8秒前
9秒前
星辰大海应助不会取名字采纳,获得10
10秒前
善学以致用应助你雕姐采纳,获得10
11秒前
shilong.yang发布了新的文献求助20
11秒前
青柠发布了新的文献求助10
12秒前
Seven发布了新的文献求助10
13秒前
科研通AI6应助王子凌采纳,获得10
13秒前
13秒前
13秒前
13秒前
闫雪发布了新的文献求助10
13秒前
YHDing发布了新的文献求助10
14秒前
15秒前
酷波er应助自信安荷采纳,获得10
15秒前
花开富贵发布了新的文献求助30
15秒前
刘荣圣完成签到,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Xenolinguistics Towards a Science of Extraterrestrial Language 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5026347
求助须知:如何正确求助?哪些是违规求助? 4262891
关于积分的说明 13287943
捐赠科研通 4070703
什么是DOI,文献DOI怎么找? 2226427
邀请新用户注册赠送积分活动 1234983
关于科研通互助平台的介绍 1158970