Neurobiological fingerprints of negative symptoms in schizophrenia identified by connectome‐based modeling

连接体 精神分裂症(面向对象编程) 心理学 神经科学 精神科 功能连接
作者
Ziyang Gao,Yuan Xiao,Fei Zhu,Tao Bo,Qiannan Zhao,Wei Yu,Jeffrey R. Bishop,Qiyong Gong,Su Lui
出处
期刊:Psychiatry and Clinical Neurosciences [Wiley]
标识
DOI:10.1111/pcn.13782
摘要

Aim As a central component of schizophrenia psychopathology, negative symptoms result in detrimental effects on long‐term functional prognosis. However, the neurobiological mechanism underlying negative symptoms remains poorly understood, which limits the development of novel treatment interventions. This study aimed to identify the specific neural fingerprints of negative symptoms in schizophrenia. Methods Based on resting‐state functional connectivity data obtained in a large sample ( n = 132) of first‐episode drug‐naïve schizophrenia patients (DN‐FES), connectome‐based predictive modeling (CPM) with cross‐validation was applied to identify functional networks that predict the severity of negative symptoms. The generalizability of identified networks was then validated in an independent sample of n = 40 DN‐FES. Results A connectivity pattern significantly driving the prediction of negative symptoms ( ρ = 0.28, MSE = 81.04, P = 0.012) was identified within and between networks implicated in motivation (medial frontal, subcortical, sensorimotor), cognition (default mode, frontoparietal, medial frontal) and error processing (medial frontal and cerebellum). The identified networks also predicted negative symptoms in the independent validation sample ( ρ = 0.37, P = 0.018). Importantly, the predictive model was symptom‐specific and robust considering the potential effects of demographic characteristics and validation strategies. Conclusions Our study discovers and validates a comprehensive network model as the unique neural substrates of negative symptoms in schizophrenia, which provides a novel and comprehensive perspective to the development of target treatment strategies for negative symptoms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shandongdaxiu发布了新的文献求助10
刚刚
彭于晏应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
玛卡巴卡应助科研通管家采纳,获得50
8秒前
无花果应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得100
8秒前
文昊完成签到,获得积分10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
9秒前
小墨应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
HeWang应助科研通管家采纳,获得30
9秒前
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
9秒前
朱朱朱发布了新的文献求助10
13秒前
14秒前
wiara完成签到,获得积分20
16秒前
16秒前
17秒前
zengliangke发布了新的文献求助10
19秒前
wanjingwan完成签到 ,获得积分10
20秒前
大知闲闲完成签到 ,获得积分10
20秒前
整齐白秋完成签到 ,获得积分10
21秒前
波安班发布了新的文献求助10
22秒前
WaveletZ完成签到,获得积分10
23秒前
鄂海菡完成签到,获得积分10
24秒前
悦文发布了新的文献求助10
25秒前
烟花应助薏米人儿采纳,获得30
26秒前
一吃就饱完成签到,获得积分10
26秒前
阿敬完成签到,获得积分10
27秒前
28秒前
31秒前
远_09完成签到 ,获得积分10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776209
求助须知:如何正确求助?哪些是违规求助? 3321725
关于积分的说明 10207313
捐赠科研通 3036940
什么是DOI,文献DOI怎么找? 1666486
邀请新用户注册赠送积分活动 797492
科研通“疑难数据库(出版商)”最低求助积分说明 757868