工作流程
激发态
计算机科学
Atom(片上系统)
机器学习
人工智能
原子物理学
算法
统计物理学
物理
并行计算
数据库
作者
K Ma,C. H. Yang,Junyao Zhang,Yunfei Li,Gang Jiang,Jun-Jie Chai
出处
期刊:Entropy
[Multidisciplinary Digital Publishing Institute]
日期:2024-11-08
卷期号:26 (11): 962-962
被引量:1
摘要
Data-driven machine learning approaches with precise predictive capabilities are proposed to address the long-standing challenges in the calculation of complex many-electron atomic systems, including high computational costs and limited accuracy. In this work, we develop a general workflow for machine learning-assisted atomic structure calculations based on the Cowan code's Hartree-Fock with relativistic corrections (HFR) theory. The workflow incorporates enhanced ElasticNet and XGBoost algorithms, refined using entropy weight methodology to optimize performance. This semi-empirical framework is applied to calculate and analyze the excited state energy levels of the 4
科研通智能强力驱动
Strongly Powered by AbleSci AI