Electric field influence on the formation and evolution of vapor gas envelope in electrolytic plasma polishing

物理 抛光 电场 等离子体 包络线(雷达) 电解质 原子物理学 电极 核物理学 航空航天工程 复合材料 雷达 材料科学 量子力学 工程类
作者
Y. Xiang,Huanwu Sun,Dongliang Yang,Juan Wang,Liang Sun
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (2)
标识
DOI:10.1063/5.0249596
摘要

Electrolytic plasma polishing is an advanced technique for refining metal surfaces, particularly with intricate geometries, where the vapor-gas envelope (VGE) plays a crucial role in determining process efficiency and quality. Nonetheless, the nonlinear physics governing VGE dynamics, particularly the interactions between fluid dynamics, electrostrictive effects, and electric fields, remain inadequately explored. This research introduces a new mechanism for VGE evolution based on bubble deformation driven by nonlinear electric field interactions. A mathematical model derived from the Navier–Stokes equation, coupled with electrohydrodynamic forces, was developed to investigate VGE dynamics under varying voltage levels. Numerical simulations of electric field intensity, conductivity distribution, and pressure fields revealed the dominant role of electrostrictive forces in driving nanoscale vapor cavity deformation. The uneven electric forces generate mechanical stress, inducing nonlinear phenomena such as bubble contraction, coalescence, and expansion, further triggering nucleate boiling and film boiling. High-speed imaging of experiments using a linearly increasing voltage pulse validated the numerical results, showing how varying electric field strengths alter VGE formation, conductivity behavior, and temperature changes. At high field intensities (9 × 104 to 14 × 104 V/m), the balance between fluid dynamic pressure and electrostrictive forces stabilizes the VGE, forming negative pressure regions and enhanced bubble coalescence. Finally, the experimentally measured conductivity verifies the accuracy of the fluid model, and an empirical model of heat flow and temperature during the VGE process is established. The findings highlight the significance of electrostrictive forces in shaping VGE behavior and provide theoretical and practical insights for optimizing high-quality polishing processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逝月发布了新的文献求助10
1秒前
只只完成签到,获得积分20
2秒前
银河以北鸿艳最美完成签到,获得积分10
2秒前
zoe发布了新的文献求助20
3秒前
噢噢完成签到,获得积分10
3秒前
magiczhu完成签到,获得积分10
3秒前
4秒前
科研通AI2S应助谨慎的芹菜采纳,获得10
6秒前
隐形曼青应助重要的向露采纳,获得10
7秒前
8秒前
Lxz完成签到 ,获得积分10
8秒前
9秒前
芒果味猕猴桃完成签到,获得积分10
9秒前
11秒前
深情飞丹完成签到 ,获得积分10
12秒前
科研通AI5应助耍酷的曼青采纳,获得10
13秒前
15秒前
耀阳完成签到 ,获得积分10
15秒前
机灵柚子应助shangx采纳,获得10
15秒前
111完成签到 ,获得积分10
16秒前
16秒前
从容问薇完成签到,获得积分10
16秒前
博修发布了新的文献求助10
17秒前
19秒前
ttttaf完成签到,获得积分10
19秒前
科研通AI5应助优美的冥幽采纳,获得10
20秒前
21秒前
23秒前
24秒前
科研通AI5应助博修采纳,获得30
25秒前
树上香蕉果完成签到,获得积分10
25秒前
哭泣以筠发布了新的文献求助10
25秒前
111发布了新的文献求助10
26秒前
liu发布了新的文献求助10
27秒前
ffff发布了新的文献求助10
28秒前
ccx发布了新的文献求助10
30秒前
阿白白完成签到,获得积分10
32秒前
33秒前
33秒前
Lucas应助猪猪hero采纳,获得10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795197
求助须知:如何正确求助?哪些是违规求助? 3340150
关于积分的说明 10299013
捐赠科研通 3056688
什么是DOI,文献DOI怎么找? 1677141
邀请新用户注册赠送积分活动 805224
科研通“疑难数据库(出版商)”最低求助积分说明 762397