亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Random effects model-based sufficient dimension reduction for independent clustered data

降维 维数(图论) 还原(数学) 数学 统计 足够的尺寸缩减 随机效应模型 计算机科学 人工智能 组合数学 医学 荟萃分析 几何学 内科学
作者
Linh Nghiem,Francis K. C. Hui
标识
DOI:10.1080/01621459.2025.2457919
摘要

Sufficient dimension reduction (SDR) is a popular class of regression methods which aim to find a small number of linear combinations of covariates that capture all the information of the responses i.e., a central subspace. The majority of current methods for SDR focus on the setting of independent observations, while the few techniques that have been developed for clustered data assume the linear transformation is identical across clusters. In this article, we introduce random effects SDR, where cluster-specific random effect central subspaces are assumed to follow a distribution on the Grassmann manifold, and the random effects distribution is characterized by a covariance matrix that captures the heterogeneity between clusters in the SDR process itself. We incorporate random effect SDR within a model-based inverse regression framework. Specifically, we propose a random effects principal fitted components model, where a two-stage algorithm is used to estimate the overall fixed effect central subspace, and predict the cluster-specific random effect central subspaces. We demonstrate the consistency of the proposed estimators, while simulation studies demonstrate the superior performance of the proposed approach compared to global and cluster-specific SDR approaches. We also present extensions of the above model to handle mixed predictors, demonstrating how random effects SDR can be achieved in the case of mixed continuous and binary covariates. Applying the proposed methods to study the longitudinal association between the life expectancy of women and socioeconomic variables across 117 countries, we find log income per capita, infant mortality, and income inequality are the main drivers of a two-dimensional fixed effect central subspace, although there is considerable heterogeneity in how the country-specific central subspaces are driven by the predictors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助小正采纳,获得10
3秒前
FangyingTang完成签到 ,获得积分10
6秒前
11秒前
CodeCraft应助wanhe采纳,获得10
12秒前
无花果应助苗苗王采纳,获得10
12秒前
白三发布了新的文献求助10
14秒前
江氏巨颏虎完成签到,获得积分10
16秒前
林狗完成签到 ,获得积分10
18秒前
Yang完成签到 ,获得积分10
21秒前
27秒前
28秒前
苗苗王发布了新的文献求助10
33秒前
Doctor完成签到 ,获得积分10
33秒前
34秒前
完美世界应助科研通管家采纳,获得10
36秒前
Orange应助科研通管家采纳,获得10
36秒前
SciGPT应助科研通管家采纳,获得10
36秒前
浮游应助科研通管家采纳,获得10
36秒前
浮游应助科研通管家采纳,获得10
36秒前
jcl完成签到,获得积分10
39秒前
40秒前
wanhe发布了新的文献求助10
41秒前
南浅完成签到 ,获得积分10
42秒前
葱葱完成签到,获得积分10
44秒前
灯露发布了新的文献求助10
46秒前
55秒前
shentaii完成签到,获得积分10
55秒前
wanhe完成签到,获得积分10
55秒前
gugugu发布了新的文献求助30
59秒前
ele_yuki完成签到,获得积分10
59秒前
搜集达人应助曹能豪采纳,获得10
1分钟前
追寻的煎蛋完成签到 ,获得积分10
1分钟前
灯露完成签到,获得积分10
1分钟前
善学以致用应助蘇q采纳,获得10
1分钟前
叶叶完成签到,获得积分10
1分钟前
1分钟前
1分钟前
丘比特应助正直的夏蓉采纳,获得10
1分钟前
xwz626完成签到,获得积分10
1分钟前
独特的追命应助zzcres采纳,获得20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4851274
求助须知:如何正确求助?哪些是违规求助? 4150163
关于积分的说明 12856456
捐赠科研通 3897987
什么是DOI,文献DOI怎么找? 2142319
邀请新用户注册赠送积分活动 1162076
关于科研通互助平台的介绍 1062091