Dynamic stress prediction for a Pump-Turbine in Low-Load Conditions: Experimental validation and phenomenological analysis

现象学模型 涡轮机 压力(语言学) 结构工程 材料科学 机械 工程类 机械工程 物理 数学 统计 语言学 哲学
作者
K Khalfaoui,Marco Zorn,Claire Ségoufin,François André,Julien Kerner,Stefan Riedelbauch
出处
期刊:Engineering Failure Analysis [Elsevier]
卷期号:162: 108428-108428 被引量:15
标识
DOI:10.1016/j.engfailanal.2024.108428
摘要

To meet the increasing demand for higher flexibility in hydropower, an operating range extension in an existing hydroelectric powerplant is considered. To this end, the dynamic flow and structural behavior of the low-head pump-turbine is investigated in turbine mode in partial load and deep partial load conditions, to evaluate the feasibility of this flexibilization due to the increased high cycle fatigue damage. In a first step, different numerical simulation approaches that combine fluid dynamics and structural dynamics are applied and compared to in-situ dynamic strain and pressure measurements on the impeller. As a result, the modelling requirements for a numerical workflow that leads to unmatched accuracy in predicting the broad-band dynamic stresses of deep partial load are identified. In a second step, the operating-point-dependent fatigue crack initiation spots are identified based on dynamic stresses. Herein, the emergence of an additional dominant critical spot near the blade leading edge is observed, which is unexpected for low-head pump turbines. Thanks to the detailed numerical flow and structural analyses, the root cause for the dynamic stress concentration is studied and the emergence of the new critical spot is understood. It turns out in deep partial load, that the main source of pressure oscillations on the impeller blade surfaces is the vortex-dominated flow detachment zone around the blade leading edge, which, in combination with the geometry of the investigated impeller, translates into the main stress oscillations. The results of this work were later used to extend the operating range of the hydroelectric powerplant from initially 25% to 100% power output to now 0% to 100%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研铁人完成签到,获得积分10
刚刚
1秒前
夏虫完成签到,获得积分10
1秒前
优雅盼海完成签到 ,获得积分20
1秒前
巴啦啦发布了新的文献求助10
1秒前
旋转木马828关注了科研通微信公众号
1秒前
李健的小迷弟应助谢谢采纳,获得10
2秒前
3秒前
呐呐完成签到,获得积分10
4秒前
danporzhu完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
小二郎应助欢欢采纳,获得10
5秒前
丁丁峥完成签到,获得积分10
5秒前
标致的问晴完成签到,获得积分10
6秒前
深情安青应助lzy采纳,获得10
7秒前
7秒前
紫儿啊完成签到,获得积分10
8秒前
8秒前
Epiphany发布了新的文献求助10
8秒前
听宇发布了新的文献求助10
9秒前
Yvonne发布了新的文献求助10
9秒前
电子屎壳郎完成签到,获得积分10
9秒前
丁丁峥发布了新的文献求助10
9秒前
10秒前
CYY完成签到,获得积分10
10秒前
研友_西门孤晴完成签到,获得积分10
10秒前
12秒前
灿澈发布了新的文献求助10
12秒前
小智0921完成签到,获得积分10
13秒前
13秒前
Joker发布了新的文献求助10
14秒前
CYY发布了新的文献求助10
15秒前
15秒前
善学以致用应助丁丁峥采纳,获得10
16秒前
wuyyuan完成签到 ,获得积分10
16秒前
1111完成签到,获得积分10
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5678952
求助须知:如何正确求助?哪些是违规求助? 4985935
关于积分的说明 15166401
捐赠科研通 4838814
什么是DOI,文献DOI怎么找? 2592729
邀请新用户注册赠送积分活动 1545994
关于科研通互助平台的介绍 1504139