HiCervix: An Extensive Hierarchical Dataset and Benchmark for Cervical Cytology Classification

水准点(测量) 计算机科学 人工智能 细胞学 模式识别(心理学) 医学 病理 地图学 地理
作者
De Cai,Jie Chen,Junhan Zhao,Yuan Xue,Sen Yang,Wei Yuan,Min Feng,Haiyan Weng,Shuguang Liu,Yulong Peng,Junyou Zhu,Kanran Wang,Christopher R. Jackson,Hongping Tang,Junzhou Huang,Xiyue Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:4
标识
DOI:10.1109/tmi.2024.3419697
摘要

Cervical cytology is a critical screening strategy for early detection of pre-cancerous and cancerous cervical lesions. The challenge lies in accurately classifying various cervical cytology cell types. Existing automated cervical cytology methods are primarily trained on databases covering a narrow range of coarse-grained cell types, which fail to provide a comprehensive and detailed performance analysis that accurately represents real-world cytopathology conditions. To overcome these limitations, we introduce HiCervix, the most extensive, multi-center cervical cytology dataset currently available to the public. HiCervix includes 40,229 cervical cells from 4,496 whole slide images, categorized into 29 annotated classes. These classes are organized within a three-level hierarchical tree to capture fine-grained subtype information. To exploit the semantic correlation inherent in this hierarchical tree, we propose HierSwin, a hierarchical vision transformer-based classification network. HierSwin serves as a benchmark for detailed feature learning in both coarse-level and fine-level cervical cancer classification tasks. In our comprehensive experiments, HierSwin demonstrated remarkable performance, achieving 92.08% accuracy for coarse-level classification and 82.93% accuracy averaged across all three levels. When compared to board-certified cytopathologists, HierSwin achieved high classification performance (0.8293 versus 0.7359 averaged accuracy), highlighting its potential for clinical applications. This newly released HiCervix dataset, along with our benchmark HierSwin method, is poised to make a substantial impact on the advancement of deep learning algorithms for rapid cervical cancer screening and greatly improve cancer prevention and patient outcomes in real-world clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Southluuu发布了新的文献求助10
刚刚
1秒前
乐观小之应助生活的狗采纳,获得10
1秒前
无花果应助荼蘼如雪采纳,获得10
2秒前
追寻寄灵发布了新的文献求助10
2秒前
yqf完成签到,获得积分10
2秒前
云歇雨住发布了新的文献求助10
3秒前
啦啦啦发布了新的文献求助30
3秒前
4秒前
pharmac发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
8秒前
9秒前
严昌发布了新的文献求助10
10秒前
丁鹏笑完成签到 ,获得积分0
11秒前
12秒前
12秒前
浅沫juanjuan完成签到,获得积分10
13秒前
荼蘼如雪发布了新的文献求助10
14秒前
品123完成签到,获得积分10
14秒前
云歇雨住发布了新的文献求助10
14秒前
排骨炖豆角完成签到 ,获得积分10
15秒前
ABJ完成签到,获得积分10
15秒前
water应助小王采纳,获得10
16秒前
啦啦啦完成签到,获得积分10
16秒前
格物观微完成签到,获得积分10
16秒前
SYLH应助不知终日梦为鱼采纳,获得10
16秒前
16秒前
wzppp发布了新的文献求助10
17秒前
huoguo完成签到 ,获得积分10
17秒前
17秒前
cxy3311完成签到,获得积分10
18秒前
ZR14124应助youyou1990采纳,获得10
19秒前
李爱国应助啦啦啦采纳,获得10
19秒前
彬彬发布了新的文献求助10
19秒前
严昌完成签到,获得积分20
20秒前
隐形曼青应助如意2023采纳,获得10
20秒前
学术智子完成签到,获得积分10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3944873
求助须知:如何正确求助?哪些是违规求助? 3489923
关于积分的说明 11054034
捐赠科研通 3220905
什么是DOI,文献DOI怎么找? 1780326
邀请新用户注册赠送积分活动 865209
科研通“疑难数据库(出版商)”最低求助积分说明 799837