亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Incremental registration towards large-scale heterogeneous point clouds by hierarchical graph matching

点云 匹配(统计) 计算机科学 比例(比率) 图形 点(几何) 人工智能 数据挖掘 理论计算机科学 地理 地图学 数学 统计 几何学
作者
Shoujun Jia,Chun Liu,Hangbin Wu,Weihua Huan,Shufan Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:213: 87-106 被引量:1
标识
DOI:10.1016/j.isprsjprs.2024.05.017
摘要

The increasing availability of point cloud acquisition techniques makes it possible to significantly increase 3D observation capacity by the registration of multi-sensor, multi-platform, and multi-temporal point clouds. However, there are geometric heterogeneities (point density variations and point distribution differences), small overlaps (30 % ∼ 50 %), and large data amounts (a few millions) among these large-scale heterogeneous point clouds, which pose great challenges for effective and efficient registration. In this paper, considering the structural representation capacity of graph model, we propose an incremental registration method for large-scale heterogeneous point clouds by hierarchical graph matching. More specifically, we first construct a novel graph model to discriminatively and robustly represent heterogeneous point clouds. In addition to conventional nodes and edges, our graph model particularly designs discriminative and robust feature descriptors for local node description and captures spatial relationships from both locations and orientations for global edge description. We further devise a matching strategy to accurately estimate node matches for our graph models with partial even small overlaps. This effectiveness benefits from the comprehensiveness of node and edge dissimilarities and the constraint of geometric consistency in the optimization objective. On this basis, we design a coarse-to-fine registration framework for effective and efficient point cloud registration. In this incremental framework, graph matching is hierarchically utilized to achieve sparse-to-dense point matching by global extraction and local propagation, which provides dense correspondences for robust coarse registration and predicts overlap ratio for accurate fine registration, and also avoids huge computation costs for large-scale point clouds. Extensive experiments on one benchmark and three changing self-built datasets with large scales, outliers, changing densities, and small overlaps show the excellent transformation and correspondence accuracies of our registration method for large-scale heterogeneous point clouds. Compared to the state-of-the-art methods (i.e., TrimICP, CoBigICP, GROR, VPFBR, DPCR, and PRR), our registration method performs approximate even higher efficiency while achieves an improvement of 33 % − 88 % regarding registration accuracy (OE).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
level完成签到 ,获得积分10
1秒前
西蓝花战士完成签到 ,获得积分10
1秒前
闲鱼耶鹤完成签到 ,获得积分10
2秒前
wuwu完成签到,获得积分10
13秒前
17秒前
Lucas应助chelsea采纳,获得10
18秒前
NexusExplorer应助chelsea采纳,获得10
18秒前
18秒前
Orange应助读书的时候采纳,获得30
20秒前
大模型应助浅眠采纳,获得10
27秒前
圆滑的铁勺完成签到,获得积分10
33秒前
34秒前
34秒前
38秒前
38秒前
39秒前
chelsea发布了新的文献求助10
40秒前
浅眠发布了新的文献求助10
40秒前
阿满完成签到 ,获得积分10
41秒前
Kirito应助无奈擎苍采纳,获得50
42秒前
赘婿应助咖啡酸醋冰采纳,获得10
43秒前
chelsea发布了新的文献求助10
43秒前
Owen应助浅眠采纳,获得10
50秒前
57秒前
香蕉觅云应助读书的时候采纳,获得30
59秒前
1分钟前
1分钟前
尊敬乐蕊发布了新的文献求助10
1分钟前
bkagyin应助Adrenaline采纳,获得10
1分钟前
阳光的凡阳完成签到,获得积分20
1分钟前
zz关闭了zz文献求助
1分钟前
某个不想做人的dio完成签到 ,获得积分10
1分钟前
顾矜应助读书的时候采纳,获得30
1分钟前
shenghaowen完成签到,获得积分10
1分钟前
上官完成签到 ,获得积分10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
1分钟前
脑洞疼应助舒服的幼荷采纳,获得10
1分钟前
隐形从梦发布了新的文献求助10
1分钟前
可靠蜗牛完成签到 ,获得积分10
1分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4053521
求助须知:如何正确求助?哪些是违规求助? 3591716
关于积分的说明 11413334
捐赠科研通 3317876
什么是DOI,文献DOI怎么找? 1824882
邀请新用户注册赠送积分活动 896263
科研通“疑难数据库(出版商)”最低求助积分说明 817398