已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Incremental registration towards large-scale heterogeneous point clouds by hierarchical graph matching

点云 匹配(统计) 计算机科学 比例(比率) 图形 点(几何) 人工智能 数据挖掘 理论计算机科学 地理 地图学 数学 统计 几何学
作者
Shoujun Jia,Chun Liu,Hangbin Wu,Weihua Huan,Shufan Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:213: 87-106 被引量:1
标识
DOI:10.1016/j.isprsjprs.2024.05.017
摘要

The increasing availability of point cloud acquisition techniques makes it possible to significantly increase 3D observation capacity by the registration of multi-sensor, multi-platform, and multi-temporal point clouds. However, there are geometric heterogeneities (point density variations and point distribution differences), small overlaps (30 % ∼ 50 %), and large data amounts (a few millions) among these large-scale heterogeneous point clouds, which pose great challenges for effective and efficient registration. In this paper, considering the structural representation capacity of graph model, we propose an incremental registration method for large-scale heterogeneous point clouds by hierarchical graph matching. More specifically, we first construct a novel graph model to discriminatively and robustly represent heterogeneous point clouds. In addition to conventional nodes and edges, our graph model particularly designs discriminative and robust feature descriptors for local node description and captures spatial relationships from both locations and orientations for global edge description. We further devise a matching strategy to accurately estimate node matches for our graph models with partial even small overlaps. This effectiveness benefits from the comprehensiveness of node and edge dissimilarities and the constraint of geometric consistency in the optimization objective. On this basis, we design a coarse-to-fine registration framework for effective and efficient point cloud registration. In this incremental framework, graph matching is hierarchically utilized to achieve sparse-to-dense point matching by global extraction and local propagation, which provides dense correspondences for robust coarse registration and predicts overlap ratio for accurate fine registration, and also avoids huge computation costs for large-scale point clouds. Extensive experiments on one benchmark and three changing self-built datasets with large scales, outliers, changing densities, and small overlaps show the excellent transformation and correspondence accuracies of our registration method for large-scale heterogeneous point clouds. Compared to the state-of-the-art methods (i.e., TrimICP, CoBigICP, GROR, VPFBR, DPCR, and PRR), our registration method performs approximate even higher efficiency while achieves an improvement of 33 % − 88 % regarding registration accuracy (OE).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
俏皮的采波完成签到 ,获得积分10
8秒前
9秒前
酒剑仙完成签到,获得积分10
12秒前
13秒前
kaiserkkk完成签到,获得积分10
13秒前
13秒前
Hqing完成签到,获得积分10
17秒前
18秒前
CYY发布了新的文献求助10
19秒前
桐桐应助forge采纳,获得10
21秒前
情怀应助老实寒云采纳,获得10
21秒前
Hqing发布了新的文献求助30
23秒前
27秒前
清爽冰露发布了新的文献求助30
28秒前
冰棒比冰冰完成签到 ,获得积分10
31秒前
32秒前
团结友爱完成签到,获得积分10
33秒前
forge发布了新的文献求助10
33秒前
刘林博关注了科研通微信公众号
33秒前
听风暖完成签到 ,获得积分10
36秒前
倪妮完成签到,获得积分10
38秒前
欢快的芹菜完成签到,获得积分10
39秒前
lyy完成签到 ,获得积分10
41秒前
CCsouljump完成签到 ,获得积分10
47秒前
虚心完成签到 ,获得积分10
50秒前
流沙完成签到,获得积分10
54秒前
56秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
Lucas应助科研通管家采纳,获得10
58秒前
香蕉觅云应助科研通管家采纳,获得10
58秒前
JamesPei应助科研通管家采纳,获得10
58秒前
YifanWang应助科研通管家采纳,获得10
58秒前
YifanWang应助科研通管家采纳,获得10
59秒前
59秒前
猪猪hero应助qinzhikai采纳,获得10
59秒前
山火完成签到,获得积分10
1分钟前
动漫大师发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778969
求助须知:如何正确求助?哪些是违规求助? 3324680
关于积分的说明 10219180
捐赠科研通 3039653
什么是DOI,文献DOI怎么找? 1668358
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758467