亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Clinical prediction models for in vitro fertilization outcomes: a systematic review, meta-analysis, and external validation

荟萃分析 系统回顾 梅德林 活产 预测建模 统计的 医学 计算机科学 医学物理学 统计 怀孕 机器学习 病理 生物 遗传学 生物化学 数学
作者
Tian Chen,Liying Liu,Yaling Huang,H. J. Yang,Yi‐Hua Lai,Chunxiao Li,Daniel Z. Q. Gan,Jie Yang
出处
期刊:Human Reproduction [Oxford University Press]
标识
DOI:10.1093/humrep/deaf013
摘要

Abstract STUDY QUESTION What is the best-performing model currently predicting live birth outcomes for IVF or ICSI? SUMMARY ANSWER Among the identified prognostic models, McLernon’s post-treatment model outperforms other models in both the meta-analysis and external validation of a Chinese cohort. WHAT IS KNOWN ALREADY With numerous similar models available across different time periods and using various predictors in IVF prognostic models, there is a need to summarize and evaluate them, due to a lack of validated evidence distinguishing high-quality from low-quality prediction tools. However, there is a notable dearth of research in the form of meta-analysis or external validation assessing the performance of models in predicting live births in this field. STUDY DESIGN, SIZE, DURATION The researchers conducted a comprehensive literature review in PubMed, EMBASE, and Web of Science, using keywords related to prognostic models and IVF/ICSI live birth outcomes. The search included studies published up to 3 April 2024, and was limited to English language studies. PARTICIPANTS/MATERIALS, SETTING, METHODS The review included studies that developed or validated prognostic models for IVF live birth outcomes while providing clear reports on model characteristics. Researchers extracted and analysed the data in accordance with the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and other model-related guidelines. For model effects in meta-analysis, the choice would be based on the heterogeneity assessed using the I2 statistic and the Cochrane Q test. Model performance was evaluated by assessing their area under the receiver operating characteristic curves (AUCs) and calibration plots in the studies. MAIN RESULTS AND THE ROLE OF CHANCE This review provides a comprehensive summary of data derived from 72 studies with an overall ROB of high or unclear. These studies contained a total of 132 predictors and 86 prognostic models, and then meta-analyses were performed for each of the five selected models. The total random effects of Templeton’s, Nelson’s, McLernon’s pre-treatment and post-treatment model demonstrated AUCs of 0.65 (95% CI: 0.61–0.69), 0.63 (95% CI: 0.63–0.64), 0.67 (95% CI: 0.62–0.71), and 0.73 (95% CI: 0.71–0.75), respectively. The total fixed effects of the intelligent data analysis score (iDAScore) model estimated an AUC of 0.66 (95% CI: 0.63–0.68). The external validation of the initial four models in our cohort produced AUCs ranging from 0.53 to 0.58, and the calibration was confirmed through calibration plots. LIMITATIONS, REASONS FOR CAUTION While the focus on English-language studies and live birth outcomes may constrain the generalizability of the findings to diverse populations, this approach equips clinicians, who view live births as the ultimate objective, with more precise and actionable reference guidelines. WIDER IMPLICATIONS OF THE FINDINGS This study represents the first meta-analysis in the field of IVF prediction models, definitively confirming the superior performance of McLernon’s post-treatment model. The conclusion is reinforced by independent validation from another perspective. Nevertheless, further investigation is warranted to develop new models and to externally validate existing high-performing models for prognostic accuracy in IVF outcomes. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Natural Science Foundation of China (Grant No. 82174517). The authors report no conflict of interest. REGISTRATION NUMBER 2022 CRD42022312018.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好巧发布了新的文献求助10
2秒前
好巧完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
外向的妍完成签到,获得积分10
20秒前
guardjohn完成签到,获得积分10
20秒前
caca完成签到,获得积分0
45秒前
开心每一天完成签到 ,获得积分10
48秒前
馆长应助科研通管家采纳,获得10
1分钟前
啊哈哈哈完成签到 ,获得积分10
1分钟前
sasa发布了新的文献求助100
2分钟前
晒太阳啦完成签到,获得积分10
2分钟前
年轻千愁完成签到 ,获得积分10
3分钟前
黑柴是柴完成签到,获得积分10
3分钟前
z123完成签到,获得积分10
3分钟前
3分钟前
3分钟前
黑柴是柴发布了新的文献求助10
3分钟前
sasa完成签到,获得积分20
3分钟前
我要发核心完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
馆长应助科研通管家采纳,获得20
4分钟前
哈哈完成签到,获得积分10
5分钟前
哈哈发布了新的文献求助10
5分钟前
sci2025opt完成签到 ,获得积分10
5分钟前
周周完成签到,获得积分10
5分钟前
5分钟前
6分钟前
wushuimei发布了新的文献求助10
6分钟前
6分钟前
充电宝应助WeihaoJin采纳,获得10
6分钟前
max完成签到 ,获得积分10
6分钟前
墨池完成签到,获得积分10
7分钟前
7分钟前
7分钟前
ric发布了新的文献求助10
7分钟前
7分钟前
8分钟前
嗷呜发布了新的文献求助10
8分钟前
SciGPT应助科研通管家采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4694757
求助须知:如何正确求助?哪些是违规求助? 4065146
关于积分的说明 12568569
捐赠科研通 3763955
什么是DOI,文献DOI怎么找? 2078790
邀请新用户注册赠送积分活动 1107126
科研通“疑难数据库(出版商)”最低求助积分说明 985352