Research on Bridge Concrete Crack Damage Prediction Method Based on Deep Learning Temporal Model

桥(图论) 计算机科学 深度学习 人工智能 结构工程 工程类 医学 内科学
作者
Weidong Xu,Cunjin Cai,Wen Xiong,Yanjie Zhu
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2025-01-7126
摘要

<div class="section abstract"><div class="htmlview paragraph">Intelligent Structural Health Monitoring (SHM) of bridge is a technology that utilizes advanced sensor technology along with professional bridge engineering knowledge, coupled with machine vision and other intelligent methods for continuously monitoring and evaluating the status of bridge structures. One application of SHM technology for bridges by way of machine learning is in the use of damage detection and quantification. In this way, changes in bridge conditions can be analyzed efficiently and accurately, ensuring stable operational performance throughout the lifecycle of the bridge. However, in the field of damage detection, although machine vision can effectively identify and quantify existing damages, it still lacks accuracy for predicting future damage trends based on real-time data. Such shortfall l may lead to late addressing of potential safety hazards, causing accelerated damage development and threatening structural safety. To tackle this problem, this study designs a deep learning model based on temporal information to solve the problem of predictive damage development, achieving early warning and dynamic evaluation effects. This study focuses on concrete crack development, and the CrackAE model is based on traditional semantic segmentation models and conditional autoencoder architecture. The model consists of an encoder and a decoder. The encoder accepts image data and outputs a feature map. The future map along with the conditional vector encoded based on physical temporal information, serves as the input to the decoder. The output of decoder is the development state of the crack at the specified prediction time. The model achieved an accuracy of 94.6% in real bending failure tests of concrete beams, indicating that the model meets high-precision prediction requirements. This validates the feasibility of deep learning in predicting damage development and provides new ideas for data collection and prediction in actual bridge maintenance.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zw2003完成签到,获得积分10
2秒前
3秒前
4秒前
6秒前
Jcer发布了新的文献求助10
6秒前
Ava应助Zox采纳,获得10
9秒前
Akim应助蒙面侠采纳,获得10
10秒前
10秒前
14秒前
共享精神应助北川采纳,获得10
14秒前
15秒前
田様应助鲁西西采纳,获得10
16秒前
爆米花应助Jcer采纳,获得10
16秒前
17秒前
vivia完成签到,获得积分20
19秒前
含糊的如霜完成签到 ,获得积分10
19秒前
含糊的如霜关注了科研通微信公众号
22秒前
22秒前
小二郎应助vivia采纳,获得10
23秒前
xuan完成签到,获得积分10
24秒前
台台发布了新的文献求助10
27秒前
28秒前
30秒前
LanceLee完成签到 ,获得积分20
30秒前
32秒前
vivia发布了新的文献求助10
32秒前
所所应助木槿采纳,获得10
33秒前
34秒前
感谢有你完成签到 ,获得积分10
34秒前
35秒前
35秒前
woreaixuexi完成签到,获得积分10
37秒前
耿教授发布了新的文献求助10
38秒前
大魁发布了新的文献求助10
40秒前
LQZ完成签到,获得积分10
41秒前
42秒前
42秒前
42秒前
42秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942380
求助须知:如何正确求助?哪些是违规求助? 3487660
关于积分的说明 11044653
捐赠科研通 3218059
什么是DOI,文献DOI怎么找? 1778763
邀请新用户注册赠送积分活动 864413
科研通“疑难数据库(出版商)”最低求助积分说明 799438