亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-quality simultaneous bright-field and dark-field imaging based on the light-field matrix model

领域(数学) 暗场显微术 光场 质量(理念) 基质(化学分析) 物理 光学 材料科学 显微镜 量子力学 数学 纯数学 复合材料
作者
Kang Liu,Jia Wu,Jing Cao,Rusheng Zhuo,Xiaoxi Chen,Qiang Zhou,Pinghe Wang,Guohua Shi
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:126 (17)
标识
DOI:10.1063/5.0253792
摘要

Dark-field imaging is widely used due to its high resolution and high contrast, but traditional methods are susceptible to noise interference and require frequent switching between bright-field and dark-field modes. This not only increases imaging complexity and sample exposure time but also affects imaging consistency. This paper proposes a simultaneous bright-field and dark-field imaging techniques based on the light-field matrix (LFM) model. Using a single light source under weak scattering conditions, the technique constructs a light-field matrix model and employs the optical field decomposition principle from transmission matrix (TM) theory to decompose the light field into three components: bright-field signals corresponding to single-scattered photons, dark-field signals corresponding to multiple-scattered photons, and noise signals. This method enables simultaneous acquisition of bright-field and dark-field images, simplifying the imaging process and reducing noise interference. Additionally, by incorporating low-rank and sparse matrix decomposition techniques, background light field interference is effectively eliminated, resulting in a 1.8-fold improvement in the dark-field imaging contrast. Experimental results demonstrate the broad applicability of this technique to various biological samples, validating its feasibility in the field of biological imaging and providing an innovative and practical solution for efficient and reliable imaging in complex scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形的雁完成签到,获得积分10
1秒前
YifanWang应助科研通管家采纳,获得20
2秒前
YifanWang应助科研通管家采纳,获得20
2秒前
YifanWang应助科研通管家采纳,获得10
2秒前
3秒前
yangjoy发布了新的文献求助10
8秒前
testmanfuxk完成签到,获得积分10
8秒前
科研通AI5应助97225采纳,获得10
9秒前
23秒前
酱豆豆完成签到 ,获得积分10
26秒前
29秒前
852应助LG采纳,获得10
35秒前
NOTHING完成签到 ,获得积分10
36秒前
JIA发布了新的文献求助30
37秒前
49秒前
哈哈哈发布了新的文献求助20
52秒前
heqiujing发布了新的文献求助10
53秒前
李剑鸿发布了新的文献求助50
1分钟前
1分钟前
王志鹏完成签到 ,获得积分10
1分钟前
爆米花应助感性的送终采纳,获得10
1分钟前
深情安青应助咸金城采纳,获得30
1分钟前
1分钟前
善学以致用应助yangjoy采纳,获得10
1分钟前
咸金城发布了新的文献求助30
1分钟前
喵喵完成签到,获得积分10
1分钟前
gb2312完成签到 ,获得积分10
1分钟前
科研通AI5应助咸金城采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
2分钟前
咸金城发布了新的文献求助10
2分钟前
巴豆完成签到 ,获得积分20
2分钟前
2分钟前
科研通AI5应助咸金城采纳,获得10
2分钟前
豆子完成签到 ,获得积分10
2分钟前
潘果果完成签到,获得积分10
2分钟前
2分钟前
哈哈哈完成签到,获得积分10
2分钟前
2分钟前
小马甲应助哈哈哈采纳,获得10
2分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cleaning Technology in Semiconductor Device Manufacturing: Proceedings of the Sixth International Symposium (Advances in Soil Science) 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837373
求助须知:如何正确求助?哪些是违规求助? 3379544
关于积分的说明 10509816
捐赠科研通 3099190
什么是DOI,文献DOI怎么找? 1706976
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772552