A New Log-Transform Histogram Equalization Technique for Deep Learning-Based Document Forgery Detection

直方图均衡化 计算机科学 直方图 人工智能 模式识别(心理学) 自适应直方图均衡化 均衡(音频) 计算机视觉 图像(数学) 算法 解码方法
作者
Yong-Yeol Bae,Dae-Jea Cho,Ki‐Hyun Jung
出处
期刊:Symmetry [Multidisciplinary Digital Publishing Institute]
卷期号:17 (3): 395-395
标识
DOI:10.3390/sym17030395
摘要

Recent advancements in image processing technology have positively impacted some fields, such as image, document, and video production. However, the negative implications of these advancements have also increased, with document image manipulation being a prominent issue. Document image manipulation involves the forgery or alteration of documents like receipts, invoices, various certificates, and confirmations. The use of such manipulated documents can cause significant economic and social disruption. To prevent these issues, various methods for the detection of forged document images are being researched, with recent proposals focused on deep learning techniques. An essential aspect of using deep learning to detect manipulated documents is to enhance or augment the characteristics of document images before inputting them into a model. Enhancing the distinctive features of manipulated documents before inputting them into a deep learning model is crucial to achieve high accuracy. One crucial characteristic of document images is their inherent symmetrical patterns, such as consistent text alignment, structural balance, and uniform pixel distribution. This study investigates document forgery detection through a symmetry-aware approach. By focusing on the symmetric structures found in document layouts and pixel distribution, the proposed LTHE technique enhances feature extraction in deep learning-based models. Therefore, this study proposes a new image enhancement technique based on the results of three general-purpose CNN models to enhance the characteristics of document images and achieve high accuracy in deep learning-based forgery detection. The proposed LTHE (Log-Transform Histogram Equalization) technique increases low pixel values through log transformation and increases image contrast by performing histogram equalization to make the features of the image more prominent. Experimental results show that the proposed LTHE technique achieves higher accuracy when compared to other enhancement methods, indicating its potential to aid the development of deep learning-based forgery detection algorithms in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
云川完成签到,获得积分20
2秒前
orixero应助小王采纳,获得10
4秒前
小小杜发布了新的文献求助10
4秒前
WU发布了新的文献求助10
5秒前
李兴业发布了新的文献求助10
6秒前
司空铭完成签到,获得积分10
8秒前
10秒前
10秒前
12秒前
12秒前
13秒前
13秒前
14秒前
陨_0614完成签到,获得积分10
14秒前
14秒前
16秒前
shirelylee发布了新的文献求助30
16秒前
隐形人完成签到 ,获得积分20
16秒前
巴山完成签到,获得积分10
17秒前
蓦然回首完成签到,获得积分10
17秒前
FashionBoy应助好好采纳,获得10
18秒前
呐呐呐发布了新的文献求助200
19秒前
陨_0614发布了新的文献求助10
19秒前
naomi发布了新的文献求助10
19秒前
叶上发布了新的文献求助10
19秒前
华仔应助石文采纳,获得10
20秒前
大恒发布了新的文献求助10
20秒前
丘比特应助张龙雨采纳,获得10
21秒前
CipherSage应助shirelylee采纳,获得10
21秒前
上官若男应助喵喵喵采纳,获得10
22秒前
22秒前
小蘑菇应助小樱颖子采纳,获得10
23秒前
25秒前
852应助科研通管家采纳,获得10
25秒前
搜集达人应助科研通管家采纳,获得10
25秒前
lixudong应助科研通管家采纳,获得10
25秒前
华仔应助科研通管家采纳,获得10
25秒前
路奇应助科研通管家采纳,获得10
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818417
求助须知:如何正确求助?哪些是违规求助? 3361563
关于积分的说明 10413396
捐赠科研通 3079823
什么是DOI,文献DOI怎么找? 1693118
邀请新用户注册赠送积分活动 814546
科研通“疑难数据库(出版商)”最低求助积分说明 768209