Toward Graph Data Collaboration in a Data-Sharing-Free Manner: A Novel Privacy-Preserving Graph Pretraining Model

计算机科学 图形 理论计算机科学
作者
Jiarong Xu,Jiaan Wang,Zenan Zhou,Tian Lu
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0115
摘要

Graph data, prevalent in various domains such as telecommunication, supply chain, and social networks, holds significant potential for business, operations, and social administration. Collaborating on graph data across institutions or users can further unleash its value, making it a highly sought-after practice. However, such collaboration poses risks to information privacy and commercial confidentiality. In response, we introduce an innovative new model-sharing strategy for graph data collaboration. Here, a data owner pretrains a graph neural network (GNN) model on their private graph data and then provides model users with query access to this model. The pretrained GNN acts as an intermediary, encapsulating knowledge from the private data without exposing it directly. Two fundamental principles are essential for such a pretrained GNN model: model generalizability and privacy preservation. However, current efforts often fail to achieve both concurrently. To tackle this challenge and promote an open yet secure graph data collaboration framework, we propose a novel privacy-preserving operator. This operator integrates smoothly with graph data augmentation and graph contrastive learning, allowing the pretraining of a GNN that effectively eliminates private links at high risk of exposure while maintaining generalizability. Additionally, to improve model generalizability, we introduce a new method called generalizability learning to enhance the model’s adaptability when deployed on unseen data of model user. This approach is designed to simulate diverse environments and develop representations that remain invariant across these varied environments. Extensive experiments suggest that our model surpasses existing state-of-the-art approaches in striking an effective balance between privacy preservation and generalizability. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This work was supported (to J. Xu) by the National Natural Science Foundation of China [Grants 62206056, 72271059, and 72442011] and the CIPSC-SMP-Zhipu Large Model Cross-Disciplinary Fund. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0115 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0115 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bertha完成签到,获得积分10
刚刚
flyxga870825发布了新的文献求助10
刚刚
刚刚
jjb发布了新的文献求助10
刚刚
刚刚
薖上发布了新的文献求助10
1秒前
何小文儿完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
哼哼嘿嘿完成签到,获得积分20
2秒前
2秒前
2秒前
苹果夜梦完成签到 ,获得积分10
2秒前
星星发布了新的文献求助10
2秒前
小蘑菇应助大黄万岁采纳,获得10
3秒前
Ava应助早日发paper采纳,获得10
3秒前
687发布了新的文献求助10
3秒前
断桥烟雨发布了新的文献求助10
3秒前
3秒前
3秒前
董晴完成签到,获得积分10
4秒前
4秒前
沧海完成签到,获得积分10
5秒前
善学以致用应助温暖白昼采纳,获得10
5秒前
共享精神应助lvv采纳,获得10
6秒前
Victoria发布了新的文献求助10
6秒前
欢呼忆丹发布了新的文献求助10
6秒前
田様应助长情的芝麻采纳,获得10
6秒前
6秒前
6秒前
7秒前
CheeseD发布了新的文献求助60
7秒前
年糕.发布了新的文献求助10
7秒前
7秒前
wanci应助做一只林鸱采纳,获得10
7秒前
顺利完成签到,获得积分20
7秒前
jjb完成签到,获得积分10
8秒前
8秒前
钢铁科研完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655030
求助须知:如何正确求助?哪些是违规求助? 4796462
关于积分的说明 15071166
捐赠科研通 4813479
什么是DOI,文献DOI怎么找? 2575214
邀请新用户注册赠送积分活动 1530609
关于科研通互助平台的介绍 1489218