化学
介孔材料
介孔二氧化硅
化学工程
热的
有机化学
催化作用
物理
工程类
气象学
作者
Xirui Huang,Tingting Ren,Runfeng Lin,Zirui Lv,Sixing Yin,Yifei Xu,Yupu Liu,Chin‐Te Hung,Min Wang,Xiaomin Li,Tiancong Zhao,Dongyuan Zhao
摘要
Imitating the multinodal structures of plants and arthropods, precisely engineered multisegment nanostructures demonstrate enhanced synergistic properties and exceptional functionalities that surpass those of individual components. Utilizing micelle assemblies for constructing segments allows for precise structural control but requires management of interactions and assembly from molecular to mesoscopic levels, posing a significant challenge. In this paper, we present a stepwise self-assembly strategy to fabricate multisegment mesoporous silica (mSiO2) nanobamboos. The nanobamboos are characterized by 16-25 shuttle-shaped mesoporous segments connected end-to-end in line, forming the main chains with an overall length of approximately 0.7-1.0 μm. Each individual segment is composed of 10-13 parallel layers, with an average layer thickness of ∼2.5 nm. The formation of this multisegment mesoporous nanobamboos, as proven by in situ testing, is initiated by the formation of shuttle-shaped segments from small bilayer micelle units, which then further assemble to form the nanobamboo. This stepwise self-assembly can be regulated from a kinetic perspective, thereby obtaining multisegment mesoporous nanostructures with varying lengths and branched morphologies. Due to multiple segments along with multilayer mesostructures, the nanobamboos can significantly restrict gas flow, resulting in a very low thermal conductivity (∼41.67 mW·m-1·K-1). By blending the multisegment mSiO2 nanobamboos with cellulose nanofibers, mechanically stable, lightweight, and porous aerogels with an ultralow thermal conductivity (∼19.85 mW·m-1·K-1) can be obtained, verifying their potential in thermal insulation devices. The fabrication of this multisegment mesoporous nanobamboos enhances our understanding of micro-to-nanoscale assembling, establishing a foundation for precise control of complex structures.
科研通智能强力驱动
Strongly Powered by AbleSci AI