Tailoring Anion‐Enriched Solvation Structures in Phosphate‐Based Electrolytes for Safety‐Enhanced Lithium Metal Batteries

材料科学 金属锂 溶剂化 锂(药物) 电解质 离子 磷酸盐 磷酸铁锂 金属 纳米技术 无机化学 电化学 物理化学 有机化学 冶金 电极 医学 化学 内分泌学
作者
Yalan Zhang,Zhixiang Yuan,Bin Xie,Junqi Cao,Hao Zhang,Shijie Zhang,Duo Wang,Sun Fu,Xiaofan Du,Jianjun Zhang,Guanglei Cui
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202504367
摘要

Abstract Both phosphate‐based high‐concentration electrolytes and localized high‐concentration electrolytes effectively address safety concerns and interfacial compatibility issues in Ni‐rich lithium metal batteries (LMBs). However, their high cost and viscosity have hindered further practical applications. Here, an intrinsically nonflammable phosphate‐based low‐concentration electrolyte is delicately presented, employing 0.7 M lithium difluoro(oxalato)borate and the flame‐retardant trimethyl phosphate solvent, to overcome the aforementioned challenges. The weak interactions between trimethyl phosphate and difluoro(oxalato)borate anions facilitate the formation of anions‐induced solvation structures and the protective layers that are rich in boron oxides and LiF. The as‐designed electrolyte has been employed to build LiNi 0.9 Co 0.05 Mn 0.05 O 2 /Li cell which demonstrates stable cycling for over 180 cycles. Additionally, the battery is also able to operate successfully over a wide temperature range, from ‐20 to 60 °C, and displays elevated thermal runaway temperatures, enhanced high‐temperature charge retention capability, and reduced gas evolution. Moreover, a 20.0 Ah pouch cell achieves a high energy density of 533.8 Wh kg −1 , showcasing great potential for commercial applications. Furthermore, this electrolyte is compatible with both layered and spinel cathodes. The delicate molecular design strategy in this work provides a promising avenue for the development of high‐safety electrolytes for high‐energy‐density Ni‐rich LMBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张典政发布了新的文献求助10
1秒前
科研通AI5应助heli采纳,获得10
1秒前
1秒前
mt1314发布了新的文献求助30
1秒前
Mira完成签到,获得积分10
2秒前
乐观道之完成签到,获得积分10
3秒前
3秒前
4秒前
科研通AI5应助典雅的黄豆采纳,获得10
4秒前
bkagyin应助饭团和阿毛采纳,获得10
4秒前
舒服的如蓉完成签到,获得积分10
5秒前
啦哈喽哈哈完成签到 ,获得积分10
6秒前
wangcc发布了新的文献求助10
7秒前
7秒前
CodeCraft应助艺馨采纳,获得10
7秒前
彩虹天堂发布了新的文献求助10
8秒前
qin完成签到 ,获得积分10
9秒前
SciGPT应助G7sunny采纳,获得30
9秒前
松鼠完成签到,获得积分20
9秒前
秋殇浅寞发布了新的文献求助10
9秒前
wuuu完成签到,获得积分10
9秒前
小马甲应助donson采纳,获得10
10秒前
10秒前
炸鸡加热发布了新的文献求助10
10秒前
Jane发布了新的文献求助10
11秒前
smiling完成签到 ,获得积分10
12秒前
文献完成签到 ,获得积分10
12秒前
天天快乐应助张典政采纳,获得10
13秒前
搜集达人应助科研小趴菜采纳,获得10
13秒前
13秒前
14秒前
14秒前
pkaq完成签到,获得积分10
14秒前
15秒前
wangcc完成签到,获得积分10
16秒前
donson发布了新的文献求助10
18秒前
小蘑菇应助whitedawn采纳,获得10
18秒前
Lucas应助普外科老白采纳,获得10
18秒前
19秒前
123发布了新的文献求助10
20秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Resonance: A Sociology of Our Relationship to the World 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828264
求助须知:如何正确求助?哪些是违规求助? 3370626
关于积分的说明 10464223
捐赠科研通 3090515
什么是DOI,文献DOI怎么找? 1700455
邀请新用户注册赠送积分活动 817837
科研通“疑难数据库(出版商)”最低求助积分说明 770506