亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing early mortality prediction for sepsis-associated acute respiratory distress syndrome patients via optimized machine learning algorithm: development and multiple databases’ validation of the SAFE-Mo

医学 急性呼吸窘迫综合征 败血症 沙发评分 SAPS II型 曲线下面积 急性呼吸窘迫 共病 急诊医学 重症监护医学 机器学习 阿帕奇II 数据库 内科学 重症监护室 计算机科学
作者
Luofeng Jiang,Chuting Yu,Chuan Xie,Yongjun Zheng,Zhaofan Xia
出处
期刊:International Journal of Surgery [Wolters Kluwer]
标识
DOI:10.1097/js9.0000000000002741
摘要

Background Acute respiratory distress syndrome (ARDS) is associated with high mortality, with sepsis accounts for 31–34% of cases. Given the global burden of sepsis (508 cases per 100,000 person-years) and its association with 20% of all global deaths, early mortality prediction in patients with sepsis-associated ARDS is critical. This study developed and validated the Sepsis-associated ARDS Fatality Evaluation Model (SAFE-Mo), a machine learning model designed to predict early mortality in sepsis-associated ARDS patients, enabling earlier identification of high-risk individuals. Methods Data were extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV, v3.0), eICU Collaborative Research Database (eICU CRD, v2.0), and Northwest ICU (NWICU, v0.1.0) using Structured Query Language. SAFE-Mo was constructed using machine learning algorithm (svmRadialSigma) focusing on median survival days among deceased patients as the primary outcome. The model’s performance was validated externally using the MIMIC-IV and eICU CRD database and compared against four commonly used clinical risk assessment models (acute physiology score III (APSIII), simplified acute physiology score II (SAPS II), sequential organ failure assessment (SOFA), charlson comorbidity index (CCI)). Additionally, NWICU was used to further validate SAFE-Mo’s generalization. Discrimination, calibration, and clinical utility were evaluated using area under the curve (AUC), Decision Curve Analysis (DCA), and calibration curves. Results SAFE-Mo demonstrated superior predictive capability of early mortality compared to traditional models. It showed the largest reasonable risk threshold probability range and highest net benefit. Calibration curves indicated a slight overestimation of mortality risk overall. With our simple SAFE-Mo web page, SAFE-Mo can assist clinicians in identifying high-risk patients early, like patients with unusually high levels of lactate in sepsis-associated ARDS, assessing prognosis, and facilitating risk-adjusted comparisons of center-specific outcomes. Practical advantages include guiding personalized treatment strategies, determining the need for aggressive interventions, and optimizing resource utilization. Conclusion This study utilized the MIMIC-IV, eICU CRD, and NWICU databases to construct and validate a machine learning model, SAFE-Mo, which predicts early mortality in patients with sepsis-associated ARDS and outperforms traditional prediction models across all metrics. SAFE-Mo can guide clinicians to focus on critical indicators such as lactate, urine output, anion gap, and others, enabling appropriate measures to improve clinical outcomes for high-risk patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈基米德应助提米橘采纳,获得50
3秒前
x9816发布了新的文献求助10
6秒前
Sunny完成签到 ,获得积分10
12秒前
muhum完成签到 ,获得积分10
15秒前
哈基米德应助提米橘采纳,获得20
17秒前
勤恳冰淇淋完成签到 ,获得积分10
20秒前
woshiwuziq完成签到 ,获得积分10
24秒前
27秒前
庾稀发布了新的文献求助10
33秒前
喵喵7完成签到 ,获得积分10
41秒前
51秒前
哈基米德应助提米橘采纳,获得20
51秒前
hvz完成签到,获得积分10
52秒前
哈基米德应助提米橘采纳,获得20
1分钟前
ZaZa完成签到,获得积分10
1分钟前
cc完成签到 ,获得积分10
1分钟前
x9816完成签到,获得积分10
1分钟前
1分钟前
务实的紫伊完成签到,获得积分10
1分钟前
wuyd90发布了新的文献求助10
1分钟前
1分钟前
哈基米德应助提米橘采纳,获得20
1分钟前
比比谁的速度快应助南风采纳,获得50
1分钟前
辛勤迎海完成签到,获得积分10
1分钟前
谢谢谢发布了新的文献求助10
1分钟前
Don完成签到 ,获得积分10
1分钟前
哈基米德应助提米橘采纳,获得20
1分钟前
Mine发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Mine完成签到,获得积分10
2分钟前
Omni发布了新的文献求助10
2分钟前
shiyi发布了新的文献求助10
2分钟前
2分钟前
ttttt应助Mine采纳,获得10
2分钟前
今后应助shiyi采纳,获得10
2分钟前
哈基米德应助提米橘采纳,获得10
2分钟前
2分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4042811
求助须知:如何正确求助?哪些是违规求助? 3580616
关于积分的说明 11383537
捐赠科研通 3308539
什么是DOI,文献DOI怎么找? 1820728
邀请新用户注册赠送积分活动 893469
科研通“疑难数据库(出版商)”最低求助积分说明 815641