Enhancing early mortality prediction for sepsis-associated acute respiratory distress syndrome patients via optimized machine learning algorithm: development and multiple databases’ validation of the SAFE-Mo

医学 急性呼吸窘迫综合征 败血症 沙发评分 SAPS II型 曲线下面积 急性呼吸窘迫 共病 急诊医学 重症监护医学 机器学习 阿帕奇II 数据库 内科学 重症监护室 计算机科学
作者
Luofeng Jiang,Chuting Yu,Chuan Xie,Yongjun Zheng,Zhaofan Xia
出处
期刊:International Journal of Surgery [Wolters Kluwer]
标识
DOI:10.1097/js9.0000000000002741
摘要

Background Acute respiratory distress syndrome (ARDS) is associated with high mortality, with sepsis accounts for 31–34% of cases. Given the global burden of sepsis (508 cases per 100,000 person-years) and its association with 20% of all global deaths, early mortality prediction in patients with sepsis-associated ARDS is critical. This study developed and validated the Sepsis-associated ARDS Fatality Evaluation Model (SAFE-Mo), a machine learning model designed to predict early mortality in sepsis-associated ARDS patients, enabling earlier identification of high-risk individuals. Methods Data were extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV, v3.0), eICU Collaborative Research Database (eICU CRD, v2.0), and Northwest ICU (NWICU, v0.1.0) using Structured Query Language. SAFE-Mo was constructed using machine learning algorithm (svmRadialSigma) focusing on median survival days among deceased patients as the primary outcome. The model’s performance was validated externally using the MIMIC-IV and eICU CRD database and compared against four commonly used clinical risk assessment models (acute physiology score III (APSIII), simplified acute physiology score II (SAPS II), sequential organ failure assessment (SOFA), charlson comorbidity index (CCI)). Additionally, NWICU was used to further validate SAFE-Mo’s generalization. Discrimination, calibration, and clinical utility were evaluated using area under the curve (AUC), Decision Curve Analysis (DCA), and calibration curves. Results SAFE-Mo demonstrated superior predictive capability of early mortality compared to traditional models. It showed the largest reasonable risk threshold probability range and highest net benefit. Calibration curves indicated a slight overestimation of mortality risk overall. With our simple SAFE-Mo web page, SAFE-Mo can assist clinicians in identifying high-risk patients early, like patients with unusually high levels of lactate in sepsis-associated ARDS, assessing prognosis, and facilitating risk-adjusted comparisons of center-specific outcomes. Practical advantages include guiding personalized treatment strategies, determining the need for aggressive interventions, and optimizing resource utilization. Conclusion This study utilized the MIMIC-IV, eICU CRD, and NWICU databases to construct and validate a machine learning model, SAFE-Mo, which predicts early mortality in patients with sepsis-associated ARDS and outperforms traditional prediction models across all metrics. SAFE-Mo can guide clinicians to focus on critical indicators such as lactate, urine output, anion gap, and others, enabling appropriate measures to improve clinical outcomes for high-risk patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱学习的瑞瑞子完成签到 ,获得积分0
1秒前
搜集达人应助ocelia采纳,获得10
1秒前
1秒前
FashionBoy应助叶梦凡采纳,获得10
4秒前
tico完成签到,获得积分10
5秒前
小可发布了新的文献求助50
5秒前
阿玖完成签到 ,获得积分10
6秒前
Jerry完成签到,获得积分10
6秒前
8秒前
神勇的半莲完成签到,获得积分10
8秒前
Yuna发布了新的文献求助20
10秒前
10秒前
11秒前
dominate完成签到,获得积分10
11秒前
温水煮青蛙完成签到,获得积分0
12秒前
思源应助Moss采纳,获得10
12秒前
12秒前
12秒前
14秒前
程程程完成签到,获得积分10
14秒前
15秒前
Ava应助研友_VZGvVn采纳,获得30
16秒前
16秒前
水色发布了新的文献求助10
17秒前
17秒前
17秒前
烦烦发布了新的文献求助10
18秒前
叶梦凡发布了新的文献求助10
19秒前
利好完成签到 ,获得积分10
21秒前
傲娇初阳发布了新的文献求助10
21秒前
daring发布了新的文献求助10
24秒前
英俊的铭应助coco采纳,获得10
24秒前
26秒前
晚星完成签到 ,获得积分10
26秒前
27秒前
28秒前
28秒前
英俊的铭应助张琳静采纳,获得10
29秒前
EV完成签到,获得积分10
29秒前
chen发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
Vertebrate Palaeontology, 5th Edition 210
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4819191
求助须知:如何正确求助?哪些是违规求助? 4128204
关于积分的说明 12775943
捐赠科研通 3867722
什么是DOI,文献DOI怎么找? 2128315
邀请新用户注册赠送积分活动 1149148
关于科研通互助平台的介绍 1044885