Deep Learning Model of Primary Tumor and Metastatic Cervical Lymph Nodes From CT for Outcome Predictions in Oropharyngeal Cancer

颈淋巴结 医学 结果(博弈论) 原发性肿瘤 淋巴 宫颈癌 肿瘤科 癌症 放射科 内科学 转移 病理 数学 数理经济学
作者
Bolin Song,Amaury Leroy,Kailin Yang,Sirvan Khalighi,Krunal Pandav,Tanmoy Dam,Jonathan Lee,Sarah J. Stock,Xiao T. Li,J.O. Sonuga,Pingfu Fu,Shlomo A. Koyfman,Nabil F. Saba,Mihir R. Patel,Mohammadhadi Khorrami
出处
期刊:JAMA network open [American Medical Association]
卷期号:8 (5): e258094-e258094 被引量:2
标识
DOI:10.1001/jamanetworkopen.2025.8094
摘要

Importance Primary tumor (PT) and metastatic cervical lymph node (LN) characteristics are highly associated with oropharyngeal squamous cell carcinoma (OPSCC) prognosis. Currently, there is a lack of studies to combine imaging characteristics of both regions for predictions of p16+ OPSCC outcomes. Objectives To develop and validate a computed tomography (CT)–based deep learning classifier that integrates PT and LN features to predict outcomes in p16+ OPSCC and to identify patients with stage I disease who may derive added benefit associated with chemotherapy. Design, Setting, and Participants In this retrospective prognostic study, radiographic CT scans were analyzed of 811 patients with p16+ OPSCC treated with definitive radiotherapy or chemoradiotherapy from 3 independent cohorts. One cohort from the Cancer Imaging Archive (1998-2013) was used for model development and validation and the 2 remaining cohorts (2002-2015) were used to externally test the model performance. The Swin Transformer architecture was applied to fuse the features from both PT and LN into a multiregion imaging risk score (SwinScore) to predict survival outcomes across and within subpopulations at various stages. Data analysis was performed between February and July 2024. Exposures Definitive radiotherapy or chemoradiotherapy treatment for patients with p16+ OPSCC. Main Outcomes and Measures Hazard ratios (HRs), log-rank tests, concordance index (C index), and net benefit were used to evaluate the associations between multiregion imaging risk score and disease-free survival (DFS), overall survival (OS), and locoregional failure (LRF). Interaction tests were conducted to assess whether the association of chemotherapy with outcome significantly differs across dichotomized multiregion imaging risk score subgroups. Results The total patient cohort comprised 811 patients with p16+ OPSCC (median age, 59.0 years [IQR, 47.4-70.6 years]; 683 men [84.2%]). In the external test set, the multiregion imaging risk score was found to be prognostic of DFS (HR, 3.76 [95% CI, 1.99-7.10]; P < .001), OS (HR, 4.80 [95% CI, 2.22-10.40]; P < .001), and LRF (HR, 4.47 [95% CI, 1.43-14.00]; P = .01) among all patients with p16+ OPSCC. The multiregion imaging risk score, integrating both PT and LN information, demonstrated a higher C index (0.63) compared with models focusing solely on PT (0.61) or LN (0.58). Chemotherapy was associated with improved DFS only among patients with high scores (HR, 0.09 [95% CI, 0.02-0.47]; P = .004) but not those with low scores (HR, 0.83 [95% CI, 0.32-2.10]; P = .69). Conclusions and Relevance This prognostic study of p16+ OPSCC describes the development of a CT-based imaging risk score integrating PT and metastatic cervical LN features to predict recurrence risk and identify suitable candidates for treatment tailoring. This tool could optimize treatment modulations of p16+ OPSCC at a highly granular level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lhxing发布了新的文献求助10
1秒前
科目三应助XIEQ采纳,获得10
1秒前
2秒前
2秒前
Ripper完成签到,获得积分10
3秒前
脑洞疼应助灯箱采纳,获得10
5秒前
6秒前
亦亦完成签到 ,获得积分10
6秒前
Akim应助万松辉采纳,获得10
7秒前
水123发布了新的文献求助10
7秒前
ding应助王豆豆采纳,获得10
8秒前
Ava应助55666采纳,获得10
8秒前
zy发布了新的文献求助30
9秒前
田様应助nihao采纳,获得30
9秒前
11秒前
11秒前
谨慎的怀寒完成签到 ,获得积分10
12秒前
12秒前
14秒前
852应助是希希啊a采纳,获得10
15秒前
王豆豆完成签到,获得积分10
15秒前
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
Xiaoguo发布了新的文献求助10
16秒前
lucas发布了新的文献求助10
16秒前
17秒前
18秒前
eviox完成签到 ,获得积分10
18秒前
火星上问儿完成签到 ,获得积分10
19秒前
19秒前
19秒前
Oscillator发布了新的文献求助10
20秒前
万松辉发布了新的文献求助10
20秒前
21秒前
蓝天应助wlmqljj采纳,获得10
22秒前
23秒前
ding应助jusong采纳,获得10
23秒前
55666发布了新的文献求助10
23秒前
背后无剑完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602277
求助须知:如何正确求助?哪些是违规求助? 4687397
关于积分的说明 14849171
捐赠科研通 4683408
什么是DOI,文献DOI怎么找? 2539806
邀请新用户注册赠送积分活动 1506494
关于科研通互助平台的介绍 1471414